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Abstract—Image-based vehicle re-identification (ReID) has
witnessed much progress in recent years thanks to the advances
of deep neural networks. However, most of existing works
struggled to extract robust and discriminative features from
a single image at each feedforward to represent one vehicle
instance. We argue that images taken from distinct viewpoints,
e.g., front and back, have significantly different appearances and
patterns for recognition. In order to ‘“memorize” each vehicle,
existing models often have to capture consistent “ID codes” from
totally different view images, which causes learning difficulties.
Additionally, we claim that correspondences among views, ie.,
various vehicle parts observed from the identical image and
the same part observed from different viewpoints, contribute
to instance-level feature learning as well. Motivated by these
observations, we propose to extract comprehensive instance-
specific representations of the same vehicle from multiple views
through modelling part-wise correlations. To this end, we present
an efficient transformer-based framework to exploit both inner-
and inter-view correlations for vehicle RelD. In specific, we first
adopt a deep encoder to condense a series of patch embeddings
from each view image. Then our efficient transformer, consisting
of a distillation token and a noise token in addition to a regular
class token, is constructed to enforce all patch embeddings to
interact with each other regardless of whether they are taken
from identical or different views. For inference, one testing image
together with its augmented counterparts (pseudo views) are
regarded as multi-view inputs and fed into our framework to
capture its representations. We conduct extensive experiments on
widely used vehicle ReID benchmarks, and our approach achieves
the state-of-the-art performance, showing the effectiveness of our
method.

Index Terms—Vehicle Re-identification, Transformer, Multi-
view Learning, Correlation Exploiting.

I. INTRODUCTION

Vehicle re-identification (RelD) aims to associate vehicle
images captured from a camera network spreading across a
variety of traffic scenarios, e.g., living areas and highways,
in a large city [1L 2} Bl 4]. This task is pretty challenging
mainly due to the following factors. First, there are often
only subtle valid discrepancies in the same view, which can
be used to distinguish vehicles with the same model [} [6]].
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Fig. 1: Part-wise correlation learning results across input
views of our approach. Our framework aims to learn in-
stance representations for vehicle RelD from multiple views
simultaneously, by modelling patch-wise inter-dependencies.
Images shown in each row are triplet inputs and taken from
the same individual. They are covered with extracted feature
maps for visualizing the high response regions, and red regions
indicate regions-of-interest (ROIs) for identifying correspond-
ing vehicles. Our framework successfully concentrates on
various informative vehicle parts from multi-view images.
Furthermore, different locations on one view (i.e., inner-view
correlation) and the same parts from multiple views (i.e., inter-
view correlation) are exploited by our approach.

Second, differences between various viewpoint images of the
same instance are so large that ReID models have to focus on
significantly different patterns, e.g., brands on front or back
views but wheels on side images [[7, [8]], at each feeding.

Given these challenges, most researchers have attempted to
redevelop official datasets and provide more supervisions in
addition to vehicle identities, to direct extraction of robust
and discriminative features. For example, in existing works,
view segmentation [6], vehicle body keypoints [8, 9], ori-
entations [8, O] [10] or informative parts [7] were manually
annotated and then another auxiliary network was optimized
to perform the corresponding recognition task for guiding
RelD representation learning. While performing well, they
inevitably involved intensive human efforts, which constrains
the applicability of these approaches. Besides, some studies
suggested adopting a self-supervised manner to encourage
discriminative local patterns discovery for vehicle ReID. Other
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researchers investigated this challenging task through present-
ing new metric learning methods [10} [12} (13} [14]]. However,
all these works narrowed their methods to capturing ReID
representations from a single image.

As stated before, vehicle images taken from different view-
points vary significantly, so do patterns for recognition. As a
result, existing models have to embed instance-related features
from only one randomly selected view image at each feeding.
That is, ReID models are supposed to encode as similar
representations as possible for one vehicle instance but from
different perspective images during the course of optimization
process. To adapt to recognition from various viewpoints,
model parameters often oscillate a lot, causing instability
during training and thus hurting final performances. Some
works [15, [16] in the RelD literature have observed this
phenomenon, which however has not been investigated as our
perspective. On the other hand, only seeing a single image
captured from one viewpoint is not what people actually do
when distinguishing a vehicle in practice. They usually search
around a vehicle body to discover distinguishable clues for
recognition from different angles. These multi-view informa-
tion is then integrated for recognizing the specific instance.
Inspired by these, we propose to learn vehicle representations
from multiple view images of each instance at the same time.

It is known that vehicle parts usually contain informative
and even discriminative details for identifying an individual.
Many works proposed their own strategies of encouraging
deep models to concentrate on these parts from a single image
[7, 18419, [11]]. In our work, we expect that our framework is able
to discover informative parts from multi-view inputs. However,
from Figure[I] we can see there are several discriminative parts
in one view and some important vehicle parts are visible from
different viewpoints. In this case, encoding high-level features
from each view separately and then fusing them together
simply is surely an intuitive but relatively coarse method,
which ignores the correlations among inner- and inter-view
parts and therefore hurts the quality of extracted instance
representations. Inspired by recent advances in transformers
[17, 18 [19], we propose to employ a transformer-based frame-
work to automatically model global part-wise correlations
existing in multiple views. Systematically, due to lack of prior
knowledge on image properties, e.g., localization, rotation and
shifting invariance in its principal design, the optimization of
a popular visual transformer often needs a massive dataset
[19} 20]]. It is unavailable for most vehicle ReID benchmarks.
To address this issue, we propose a customized transformer,
which does not require any pretraining on ImageNet-scale
dataset [21] and thus can be trained easily and efficiently on
vehicle RelD benchmarks.

Note that [22] also attempted to extract representations
from multiple vehicle images, while our work is significantly
different from theirs. They randomly selected a couple of
images belonging to the same vehicle and treated them as
a frame sequence. Then they used Long Short Term Memory
(LSTM) network to extract and aggregate image-level features
for vehicle RelD. However, these images are taken from
random viewpoints rather than coherent angles, whose con-
fusing correspondences can not be reasonably represented by

LSTM in principle. This does not matter for our transformer-
based framework. Besides, they encoded representations from
each view independently and simply combined image-level
representations together for vehicle RelD, which took neither
local features nor their correspondences (across views) into
account. In our work, nevertheless, an efficient transformer is
presented to learn part-level correlations across views.

To be more specific, we first employ a convnet to extract
structural patch representations from each view image. These
embeddings are incorporated with a class token, a distillation
token, and a noise token to comprise the input of stacked
transformer layers. The distillation token is proposed to distill
knowledge from the convnet to the transformer for facilitating
its learning. And the noise token is designed to encourage
classification entropy maximization for preventing the over-
fitting when training transformer on a RelD dataset. It is
worth noting that our efficient transformer is learned from
scratch and does not rely on the pretraining on a large-scale
dataset, which suggests that ours is significantly different from
and much more challenging than another concurrent work on
transformer-based RelD [23]. It is on the basis of fine-tuning
a pretrained visual transformer on vehicle ReID benchmarks
and also aims to condense vehicle representations from a sing
view like other works. To summarize, our main contributions
are as follows:

o We are the first to present a transformer driven framework
to capture comprehensive instance codes from multiple
view images for vehicle RelD.

o The proposed transformer is able to exploit part-wise
correlations across views successfully.

o Our efficient transformer, containing a distillation token
and a noise token, can be trained from scratch on vehicle
RelD datasets with no need of sophisticated pretraining
on ImageNet.

o Our approach outperforms recent state-of-the-art (SOTA)
works on popular vehicle ReID benchmarks.

II. RELATED WORKS

Vehicle RelD. The majority of recent works in this field
struggled to extract robust global and discriminative local
representations under guidance of extra supervisions as well
as ID labels [6} [7, 18 [10} 24} 25} 261 27, 28| 29} 30, 131}, 132, [33]].
Typically, recognizing vehicle attributes, e.g., color and model
[28, 29, 130, 31} 132, 133]], was incorporated into multi-task
optimization scheme to regularize representation learning. [7]
located informative parts of vehicles, such as the front or back
window and the license plate, by human labor and trained a
separate YOLO network to predict the positions of these parts
as regions-of-interest (ROIs) of the ReID model. Similarly,
ground truths of view segmentation were provided in [6] and
a U-Net semantic parser was optimized to segment vehicle
bodies for further view-aware feature alignment. Instead, sev-
eral studies sought self-supervised approaches for enforcing
ReID models to focus on distinguishable vehicle details [[1L1].
Additionally, metric learning is also an integral section of
RelD literature [10, 12} 13} [14]. While, our work is distinct
from all these investigations. We aim to learn instance-specific
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Fig. 2: Overview of our framework, which aims to learn instance-distinguishable representations from M views by modelling
part-wise dependencies. In this figure, we take M = 3 as an example for illustration. The framework is composed of two
modules: the convnet encoder and the transformer. BN and GAP are short for Batch Normalization and Global Average
Pooling, respectively. The dashed lines indicate data flows that only run during the inference phase, where a testing image and

its augmented versions serve as pseudo multi-view inputs.

representations from multiple views by modeling global cor-
relations among vehicle parts. Significantly, our proposal does
not require extra supervisions except from vehicle identities.

Visual Transformer. Transformer based on Multi-Head Self-
Attention (MHSA) originates from [[17] and shows its power
on modelling long-range dependencies in Natural Language
Processing (NLP) [18]. By dividing an image into a series
of patches and feeding patch embeddings into a stack of
MHSA layers, ViT [[19] introduced transformer into visual
recognition successfully. However, due to the lack of prior
knowledge on intrinsic image properties in its architecture
design, the performance of ViT on ImageNet depended on
the heavy pretraining on a tremendous private dataset, which
was unfeasible for most researchers. DeiT [20] proposed to
optimize a transformer on ImageNet efficiently through knowl-
edge distillation from a convnet teacher to the student trans-
former. Similarly, to facilitate transformer learning, T2T-ViT
[34] proposed to take local rigid information of images into
account. They presented a tokens-to-token transformer which
merged structured neighboring tokens into one token gradually.
Motivated by the success of residual network structure in
deep learning, Bottleneck Transformer [35] simply replaced
the 3 x 3 convoluational layers of the last group in ResNet [36]]
with MHSASs to capture global dependencies among high-level
features. Except from image classification, visual transformers
also demonstrate desirable potentials in other computer vision
areas, e.g., semantic segmentation [37, 138]], object detection
[38) 139]], point cloud computing [40], and medical image
analysis [41]].

In contrast, our transformer is devised for a fine-grained
and open-set classification problem, namely vehicle re-
identification. It is much more difficult, which is because
of not only disjoint classes between the training and testing
set but also the quite smaller scale of training set (usually
containing approximate ten thousands samples). Concurrently,

[23] also attempts to employ a visual transformer to address
RelD problem. Nevertheless, their work relies on fine-tuning
an ImageNet-pretrained transformer on an object ReID bench-
mark and does not pay attention to optimizing it directly on
a small RelD dataset. As known to all, the latter is much
more challenging. Our transformer differs significantly from
all existing equivalents in terms of network width, depth,
and tokens. More importantly, ours can be optimized on a
RelID dataset efficiently and easily, with random parameter
initialization.

III. TRANSFORMER DRIVEN INTER- AND INNER-VIEW
PART-WISE CORRELATION LEARNING

As shown in Figure 2] our framework consists of two
phases: condensing a sequence of patch embeddings from
multiple view images by the convnet encoder and afterwards
aggregating instance representations through patch-wise inter-
acting in the transformer. In the remaining of this section, we
introduce each key component in turn.

A. Preliminaries

Given a query image, vehicle RelD is to obtain a
ranking list of all gallery images according to similarity
scores between query and each gallery image. The similar-
ity score is usually calculated from deep embeddings, i.e.,
cos(f(zq;0), f(z4;0)). Here  f(-;0) represents a deep
feature network with the learnable parameter set 6; x4, x4
are a query and gallery image respectively; cos(-) denotes the
cosine similarity function. f(-; @) is optimized on the training
set D = {z;, yi}i]\il, where x;, y; are a vehicle image and
its identity label and N is the number of training samples. It
is obvious that the capability of the deep model is crucial for
high-performing RelD.
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B. Convolutional Patch Embedding

As discussed before, the optimization of a pure transformer
network often necessitates a large number of training samples
since there is no prior knowledge of image inherent properties
embedded in its architecture design [19, 20]. However, the
sizes of most vehicle RelD benchmarks are much smaller
than those of ImageNet-alike large-scale datasets. To enable
successful training of our framework, we choose to first extract
structured patch representations from each view image by
a convnet. Here, we employ ResNet50 [36] to achieve this
considering that it is widely used in ReID. Our final goal is to
perform correlation learning among patch embeddings rather
than high-level representations so that we take the outputs
of the third convoluational group to derive subsequent patch
tokens of our transformer.

As shown in Figure 2] we denote the number of input
views as M and take M = 3 as an example for subsequent
formulations. In specific, the input images are represented by
{zi, z;, x;} and they are taken from D with y; = y; = ys,
i.e., they belong to the same vehicle. The convnet encoder is
divided into two subnetworks (green and orange), represented
by f(;0p1) and  f(;042) respectively. By passing input
images through f(-;80p1), we obtain a series of 3D tensors
{ f(xi;0p1), f(z;;0v1), f(xi;6p1)} with each holding the
dimension of R¢*"*% Then the spatial dimensions of each
tensor are flattened, yielding R°*"" as the final shape. By
transposing their first and second dimension and performing a
linear projection, we get a set of 2D tensors with shape R"**?,
where ¢ is the embedding dimension of our transformer tokens.
All tokens are incorporated in the order of classification, noise,
view patches, and distillation, as illustrated in Figure [2| They
are concatenated together, achieving a new tensor with the size
of RGBM+3)xt - Adding the position embeddings with the same
size to it, we eventually get the input tensor I € R(3hw+3)xt
of our transformer.

C. Distilling Knowledge for Regularizing Transformer Learn-
ing

As explained before, the optimization of a transformer
network from scratch on ReID benchmarks is pretty difficult
since there are not enough data-ground truth pairs. It is
well recognized that the learning of a convnet on small
datasets is relatively easier, attributed to the superiority of
its architecture design, e.g., shared convolutional kernels. In
order to train our transformer effectively and efficiently, we
propose to employ the knowledge from the convnet encoder
to regularize our transformer learning. The convnet encoder,
in this case, serves two purposes in our framework: encoding
patch representations and facilitating transformer optimization.
And it is pretrained in advance on a RelD dataset.

M tensors { f(x;;0p1), f(x;;0p1), f(zk;0p1)} with the
dimension R*"*% are extracted from {z;, x;, 1} by the
subnetwork  f(+;6p1), as stated in Section We then
acquire the tensor f( f(x;;60p1); Op2) from the image x; by
processing f(z;;0p1) using the second subnetwork f(-;02).
The other two tensors embedded from x; and x are in the
similar formations and we only take the features of x; as an

example to simplify the description. After that, Global Average
Pooling (GAP), Batch Normalization (BN), and the linear
classification are performed to further process these tensors.
Then the generated logits for x;, x; and x;, are averaged to
get the final ones [z1,...,2¢], where C is the number of
vehicle instances in D. The logits are scaled by a coefficient
and converted to the classification distribution P by a softmax
operation, with the hth entry calculated as:

_exp(an/T)
Pr = > exp (zr/7)

where 7 is the so-called temperature coefficient for adjusting
the distribution sharpness. We set 7 = 16 in our final
experiments.

Meanwhile, the transformer is responsible for learning long-
range dependencies among tokens of the input I, i.e., inter-
and inner-view correlation learning. After the computation of a
stack of MHSAs in the transformer, its output tensor O keeps
the same dimensions with I, i.e., O € RBMwH3)Xt Thep a
linear classifier is also utilized to change the feature dimension
of the distillation token and derive the logits [wq,...,wc].
Similarly, a softmax operation is adopted to transform the
logits after scaling and the resultant classification distribution
is denoted as (), whose hth element is:

)

exp (wn/7)
qn = S exp (w,/7)" 2)

T eXp (wT/ T)
Subsequently, Kullback-Leibler Divergence is employed to
evaluate the distance of these two distributions, i.e.,
P(r)
Qr)
By minimizing Lk p, we enforce the distillation token of our
transformer to capture as similar representations as those of the
convnet. Meanwhile, it transmits effective information to other
tokens including the classification token through interactions
of self-attention computing automatically.

Lirp(P|Q) =) P(r)log (3)

D. Maximizing Classification Entropy

When training a transformer network on a small dataset,
over-fitting can often be observed. Data augmentation is an
important technique for extending the training set and avoiding
it to some extent. However, we find that this strategy is
not enough to train a generalizable transformer-based RelD
model. We propose a simple yet effective method to tackle
this problem. That is, in addition to the classification and
distillation token, another token can be employed to predict a
uniform classification distribution. In other words, we expect
that the input multiple views would be assigned to any class
at random with the same probability. We term this token as
the noise token because this strategy is equivalent to adding
noise into the framework optimization, which has been shown
to be helpful for network training [42} 43| 44, |45| 46].

Concretely, the noise token is split from O according to its
embedded position in /. It is projected into class prediction
logits by a linear layer. And processed by a softmax operation,
the class distribution is denoted as G = [¢1,...,¢gc]- So the



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, JAN 2021

entropy maximization objective function can be formulated as:
Ley :ZG(T) log G(r). 4)

The optimization of Ly, encourages the uniform classifica-
tion of input samples, which is demonstrated to be effective
for improving inference performances of our framework.

E. RelD Related Losses

In the literature, hard mining triplet loss (Tri) [47] and
smoothed cross entropy loss (ID) [48]] are widely used to
optimize RelD models. They are typically integrated by the
Batch Normalization neck (BNNeck) proposed in [15]. We
borrow the same mechanism to derive the triplet loss Lp,; and
ID loss L;p from the classification token of our transformer,
as shown in Figure

F. Overall Objectives

To optimize our framework, we combine all loss functions
by linear summation as our final objectives:

Loverat = MLixrp + MLy + A3Lrri + MaLip,  (5)

where A1, A2, A3, A4 are balancing coefficients and their values
are simply chosen according to initial scales of corresponding
loss terms without heavy tuning. And their values are set as
le4, le-2, 1.0, and 1.0, respectively.

G. Network Architecture

Generally, our framework is composed of the convnet
encoder and the transformer. We employ the ResNet50, with
stride = 2 in convb_x replaced with stride = 1, as the
patch embedding encoder. Referring to Figure [2] the green
subnetwork consists of sequential convl, conv2_z, conv3d_x,
and conv4_z. The last convolutional group conv5_x of the
ResNet50 composes the orange subnetwork, followed by a
GAP layer and a BNNeck structure. In order to reduce the
number of patch tokens for saving computation memory, the
output tensor of the first subnetwork is actually processed by a
max pooling operation with stride = 2 and kernel size = 3
before being flattened. All classifiers and the linear projector
are acted by fully connected layers with different input and
output channels accordingly. The design of our transformer
layers refers to that of DeiT [20]. However, to model the
more complex part correlations among multi-view images,
we increase the dimension of the token embeddings to 1,920
and the number of the attention heads in MHSAs to 96. The
feature dimension expanding ratio in multilayer perceptron
(MLP) is set as two instead of four to reduce memory cost.
Furthermore, unlike widely used transformers, ours contains
much less MHSA-based layers, i.e., four layers for VeRi-776
[31], six layers for VehicleID [49] and VERI-Wild [50].

TABLE I: Results comparison on VeRi-776. Our approach
outperforms other methods, including those involving more
human efforts, on two most important metrics, e.g., tmAP and
imAP.

Method | Venue | ES | tmAP | imAP | Top-1 | Top-5
Siamese+Path [51] ICCV17 Y 58.27 - 83.49 90.04
OIFE [8] ICCV17 Y 48.0 65.9 87.7
OIFE+ST [8] ICCV17 Y 51.42 68.3 89.7
NuFACT [30] TMM17 Y 53.42 81.56 95.11
VAMI [33] CVPR18 Y 50.13 77.03 90.82
AAVER [9] ICCV19 Y 58.52 - 88.68 94.10
RS [26] ICCV19 Y - 63.76 90.70 94.40
R+MT+K [26] ICCV19 Y - 65.44 90.94 96.72
VANet [10] ICCV19 Y 66.34 - 89.78 95.99
PART [7] CVPR19 Y 74.3 94.3 98.7
SAN [52] MST20 Y 72.5 - 93.3 97.1
CFVMNet [53] MM20 Y - 77.06 95.3 98.4
PVEN [6] CVPR20 Y - 79.5 95.6 98.4
SPAN [24] ECCV20 Y 68.9 - 94.0 97.6
DMML [12] ICCV19 N - 70.1 91.2 96.3
UMTS [54] AAAI20 N - 75.9 95.8 -
SAVER [11] ECCV20 N 79.6 - 96.4 98.6
Ours - N 86.0 80.9 96.2 98.4

IV. EXPERIMENTS

Datasets. 1) VeRi-776 is constructed by [31] and contains
49,357 multi-view images of 776 vehicles, which are captured
by 20 non-overlapping cameras. And 37,778 images of 576
identities and 11,579 images of the remaining 200 instances
have been chosen as training and testing set, respectively. The
query set contains 1,678 images selected from the testing
set. When testing, the gallery set contains all the images in
the testing set except those which share the same identity
and camera ID as the probe. 2) VehicleID [49] is a widely
used large-scale vehicle RelD dataset which contains 221,763
images of 26,267 vehicles taken from front or rear view.
113,346 images of 13,164 vehicles are selected for training
and others are reserved for evaluation. The gallery set only
contains one image for each testing identity. There are three
gallery sizes widely used for evaluation, ie., 800 (Small),
1,600 (Medium), and 2,400 (Large). Obviously, VehicleID is a
much more challenging benchmark because it involves plenty
of vehicle instances. So training ReID models on it usually re-
quires more epochs and more complicated learning rate sched-
uler. 3) VERI-Wild [50] is another large-scale vehicle RelD
benchmark, composed of 416,314 images of 40,671 vehicles
taken by 174 cameras. Its images are captured from various
viewpoints, under different weathers and lighting conditions.
The testing set contains 138,517 images of 10,000 identities
in total, divided into three subsets with 3,000 (Small), 5,000
(Medium), and 10,000 (Large) vehicles respectively.

Implementation. We choose PyTorch to implement our frame-
work and Adam optimizer [55] with default betas (8; = 0.9,
B2 = 0.999), weight decay 5e-4 to optimize it. The initial
learning rate in all experiments is le-4. During training, ran-
dom cropping, horizontally flipping, and erasing are performed
to augment data samples. All images are resized to 256 x 256.
When training the patch embedding encoder on VeRi-776,
VehicleID, and VERI-Wild, the batch size is respective 28,
40, and 100, with 4 images from each instance. The margin
of triplet loss is set as 0.5 empirically. On VeRi-776, the total
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TABLE II: Results comparison on VehicleID. It is observed 4 Performance Comparison with SOTA Methods

that our approach achieves SOTA performances on five out of
six indicators.

Small Medium Large
Method Venue | ES Top-1[Top-5]| Top-1]Top-5| Top-1[Top-5
GoogLeNet [S7]|CVPRIS| Y [47.90|67.43 |43.45|63.53|38.24 59.51
MD+CCL [49] |CVPRI6| Y | 49.0 | 73.5 | 42.8 | 66.8 | 38.2 | 61.6
OIFE [8] ICCV17|Y - - - - 67.0 | 82.9
NuFACT [30] | TMM17 | Y |48.90|69.51|43.64|65.34|38.63|60.72
VAMI [33] CVPRI8|Y | 63.1 | 833 | 52.9 | 75.1 | 47.3 | 70.3
AAVER [9] |ICCV19 | Y |72.47]93.22|66.85|89.39|60.23 | 84.85
VANet [10] ICCV19 | Y |88.12|97.29 | 83.17 | 95.14 | 80.35 | 92.97
PART [7] CVPRIO| Y | 784 | 923 | 75.0 | 88.3 | 74.2 | 86.4
SAN [52] MST20 | Y | 79.7 | 943 | 78.4 | 91.3 | 75.6 | 88.3
CFVMNet [53] | MM20 | Y | 81.4 | 94.1 | 77.3 | 90.4 | 74.7 | 88.7
PVEN [6] CVPR20| Y | 84.7 | 97.0 | 80.6 | 94.5 | 77.8 | 92.0

UMTS [54] |AAAI20| N | 80.9 - 78.8 - 76.1 -
SAVER [11] |ECCV20| N | 799|952 | 77.6 | 91.1 | 75.3 | 88.3
Ours - N | 86.8 | 97.3 | 83.4 | 95.8 | 80.6 | 93.1

training epochs is 80 and the learning rate is decreased by a
factor of 0.1 after running every 20 epochs. On VehicleID and
VERI-Wild, the total training epochs is 120 and the learning
rate is adjusted using a warmup cosine annealing schedule
(WCA), i.e., it is increased linearly from O to le-4 during the
first 10 epochs, decreased with a cosine annealing scheduler.

When training our transformer, we freeze the learned pa-
rameters of the patch encoder. On VeRi-776, VehicleID, and
VERI-Wild, M is set as 3, 2, and 2 respectively. The training
batch size is multiplied by M, namely with 40 images from
each instance. And randomly selected M images from the
same instance form each input group of our framework. The
number of total training epochs is 50 and the WCA is also
utilized to adjust the learning rate. Our framework attempts to
extract rich patters from multiple views. So it is reasonable to
push the hard-negative “samples” farther away from the hard-
positive ones w.r.t. the anchors by setting a larger margin 0.7
in triplet loss.

During inference, we combine the original image, its hor-
izontally flipped version (and centrally cropped version on
VeRi-776) together as pseudo multi-view inputs of our frame-
work. The global vector and part-wise correlation vector in
Figure [2] are concatenated along the feature dimension as the
final vehicle representations.

Evaluation Protocols. We do not adopt any post-processing
strategies, e.g., k-reciprocal re-ranking [56], to further improve
our performances. Our framework is evaluated by four popular
metrics in the RelD literature, i.e., image-to-track retrieval
mean Average Precision (tmAP) (only for VeRi-776 with
tracks information), image-to-image retrieval mAP (imAP),
Top-1, and Top-5 accuracy. Unlike other works providing
either tmAP or imAP on VeRi-776, we report both for
comprehensive comparison. These metric scores are shown
as percentages and the best ones in each table are marked
by bold. For fair comparison, in Table [I, Il and [II, we
use the abbreviation ES (Y/N) to indicate whether any Extra
Supervision in addition to vehicle identities is adopted to
enhance a corresponding method.

VeRi-776. In Table |, we compare our results with those of
recent works. A few of them focused on performing vehicle
ReID only under the guidance of identity labels like ours,
and the majority struggled to exploit more supervisions to
implement their approaches. In [10]], for example, vehicle
body orientations of respective 5,000 images from VeRi-776
and VehicleID were manually labelled to train a viewpoint
classifier. Distinct metrics for similar and dissimilar view-
point images were learned for RelD based on this viewpoint
predictor. Similarly, in [7]], front and back lights, front and
back windows, and brands were thought as informative and
discriminative vehicle parts. Thus the locations of these parts
were annotated and a YOLO detector [58]] was optimized to
detect them in an offline manner. When performing RelD,
local features were condensed from these regions as supple-
mentary of global representations. Besides, a U-Net based
semantic parser was trained in [6] by using the supervision
from vehicle view segmentation of 3,165 images from VeRi-
776. The parser was responsible for predicting a view mask
which facilitated the proposed view-aware feature alignment
when optimizing their ReID model. AAVER [9] relied on
predicting the defined keypoints and orientation to guide
their discriminative feature learning. Also, SAN [52]] adopted
various attribute annotations to supervise their attribute-aware
branch. Although no enhancement from additional supervi-
sions was borrowed in SAVER [[11] explicitly, they required
that the Detectron object detector [59] had to be utilized
to pre-process all vehicle images for removing background
noise, which indirectly involved the information from object
detection benchmarks.

In contrast, our framework does not need any extra super-
visions at all. Only with vehicle identity annotations, we aim
to conduct correlation learning among discriminative parts of
multi-views for the extraction of integrated instance represen-
tations. Besides, our training batch size is much smaller than
those of other methods, e.g., 256 in SAN [52], because of
GPU resource limitation. As we know, a larger image batch
in forward feeding contains more similar negative samples and
dissimilar positive samples to each anchor, definitely enforcing
a ReID model to be more distinguishable, when optimizing
it using triplet loss. Even under these hostile conditions, our
approach can still beat all other competitors on tmAP and
imAP. In terms of Top-5 accuracy, our result is just 0.3%
worse than that of PART [7] whose training image size
512 x 512 is much larger than ours. It was demonstrated in
[7] that increasing image resolution was able to improve the
performances of their proposal considerably. If compared with
their results under our image resolution, ours are significantly
better on all metrics.

VehicleID. Most of the SOTA methods on this dataset are
identical to those on VeRi-776, except from MD+CCL [49]]
and GoogLeNet [57]]. Thus we do not elaborate them in details.
Their results are listed in Table [[] for comparison. Please
be aware that PVEN [6] required much larger batch size
256 to achieve their performances in addition to involving
extra supervisions. Despite these challenges, our approach
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Fig. 3: Visualization comparison of ranking results: the Baseline method (left) and our approach (right). Two query images
(indicated by green boxes) on each row are the same, followed by the respective top 20 candidates from the gallery set. They
are sorted according to their similarities with the query in descending order. The images in red boxes are negative candidates.
Obviously our framework is much more powerful than the baseline in capturing discriminative details from vehicle images

and therefore eliminating pretty challenging distractors.

outperforms all these proposals on almost every metric of
three gallery sizes. Especially on difficult testing scenarios,
i.e., Medium and Large gallery, our framework is the best one.
When compared with SAVER [11]], our approach performs
significantly better on all evaluation indicators, i.e., 6.9% Top-
1, 2.1% Top-5 on Small gallery, 5.8% Top-1, 4.7% Top-5
on Medium gallery, and 5.3% Top-1, 4.8% Top-5 on Large
gallery higher, although the former required customized pre-
processing strategies.

VERI-Wild. The results comparison on this benchmark is
reported in Table Note that PVEN [6] does not adopt
the same testing setting with others, i.e., the candidate gallery
images with identical vehicle ID and camera ID to the query
are not removed for evaluation. This operation is thought to
enhance the performances largely. For a fair comparison, we
also report our results under the same setting. Our approach
can easily beat other methods on all metrics although some of
them employ auxiliary information. On the most challenging
evaluation scenario (i.e., Large testing set), for example, our
result on imAP is 2.4% better than the second best [60].

B. Ablation Study

We conduct detailed ablation study experiments to validate
the efficacy of our proposals and report all results in Table
[Vl and [V1]

Effectiveness of Each Proposed Component. In Table
we release our experiment results of adding each component
into the baseline method (Baseline) in turn. The Baseline
refers to a RelD model consisting of a ResNet50 as its
backbone and a BNNeck mechanism, which is commonly
treated as the baseline in recent RelD literature [15]. We report
tmAP, imAP, and Top-1 accuracy on VeRi-776 and Top-1,
Top-5 accuracy on VehicleID for thorough comparison. The
Transformer indicates simply using a common transformer

(without our distillation and noise token) to exploit part-wise
correlation for ReID. Except indicated, we only adopt the part-
wise correlation vector derived from the transformer (referring
to Figure [2) as representations of each testing image to better
evaluate our proposals. From the second section of Table
[[V] margin improvements for all metrics are beneficial from
directly using Transformer, which, compared with our final
improvements, demonstrates the significance of our proposed
components. Then through adding the distillation token, we
conduct experiments with distilling knowledge from the con-
vnet encoder to our transformer (+ Distill). The improvements
upon Transformer are pretty impressive on most metrics.
To prevent the over-fitting phenomenon when training the
transformer-based framework on a RelD dataset, we further
involve our noise token to enforce the classification entropy
maximization (+ EM). It can be observed that all indicators are
further promoted. By concatenating the part-wise correlation
vector from our transformer and the global vector from the
convnet encoder together, we acquire the final version of our
framework (Ours). We can also conclude that the convolutional
features, in addition to the part-wise correlation learning based
transformer representations, further contribute to our final
performances.

Improvements of Multi-view Testing. We report both Single-
view and Multi-view testing results in Table [V] When extract-
ing the representation vector for a testing image, we treat its
original and augmented versions as the multi-view inputs. To
demonstrate that our framework is capable of capturing more
distinguishable features from the “pseudo” multiple views
(Multi-view), we also perform another testing procedure, i.e.,
encoding representations from an original image and its copies
(Single-view). Considerable performance gains on two datasets
are seen from the Multi-view testing.

Robustness in Terms of Hyperparameter Adjustment.
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TABLE III: Performance comparisons on VERI-Wild. % These testings do not remove gallery images with the same identity

and camera as the query. Apparently, our method is significantly better than existing works.

Es|

Smal!

1

Medium

Large

Method ‘ Venue ‘ [imAP [ Top-1] Top-5 | imAP | Top-1[ Top-5 | ImAP| Top-1] Top-5
AAVER [O] | ICCVIO [ Y | 622 | 75.8 | 92.7 | 53.7 | 68.2 | 88.0 | 41.7 | 58.7 | 81.6
PGAN [60] | TITS20 | Y | 83.6 | 95.1 | - [783|928 | - |706(892| -
DFNet [61] | TPAMI21| Y | 83.1 | 94.8 | 98.1 | 77.3 [ 93.2 | 97.5 | 69.9 | 89.4 | 96.0
FDA [50] | CVPRIO | N | 35.1 | 64.0 | 82.8 | 29.8 | 57.8 | 783 | 22.8 | 49.4 | 70.5
BW [62] [IJCNN19|N | 70.5 | 84.2 | 953 | 62.8 | 78.2 | 93.1 | 51.6 | 70.0 | 88.5
SAVER [I1]| ECCV20 | N | 80.9 | 93.8 | 97.9 | 753 | 92.7 | 97.5 | 67.7 | 89.5 | 95.8
Ours - N850 953|986 | 79.8 | 93.3 | 98.1 | 73.0 | 90.2 | 96.2
PVEN [6]" | CVPR20 | Y | 82.5 | 96.7 | 99.2 | 77.0 | 95.4 | 988 | 69.7 | 93.4 | 978
Ours* - ‘ N ‘ 87.1 ‘ 97.2 ‘ 99.4 ‘ 82.5 ‘ 96.0 ‘ 99.1 ‘ 76.2 ‘ 943 ‘ 98.2

TABLE IV: Ablation study on VeRi-776 and VehicleID. The Baseline refers to a ReID model employing a ResNet50 as its
backbone. The Transformer here represents directly using a regular transformer to perform part-wise correlation learning. The
Distill and EM indicate adding the distillation token for knowledge distillation and the noise token encouraging classification
entropy maximization into the Transformer. Gradually improved performances demonstrate their efficacy when incorporating

more proposals into the baseline network.

Method V§Ri—776 Small Medium Large
tmAP [imAP [ Top-1 | Top-1] Top-5 | Top-1 [ Top-5 [ Top-1[Top-5
Baseline | 83.2 | 77.2 [ 95.5 | 80.1 | 93.3 | 77.2 | 90.6 | 75.0 | 87.1
Transformer | 83.8 | 77.5 | 959 | 80.2 | 93.3 | 77.4 | 90.7 | 75.4 | 87.9
+ Distill | 853 | 79.6 | 95.6 | 86.1 | 96.8 | 82.1 | 949 | 79.6 | 92.6
+ EM 85.7 | 80.0 | 95.9 | 86.5 | 97.0 | 82.6 | 95.2 | 80.0 | 92.7
Ours 86.0 | 80.9 | 96.2 | 86.8 | 97.3 | 83.4 | 95.8 | 80.6 | 93.1

TABLE V: Effect of multi-view testing on VeRi-776 and VehicleID. Single-view:

feeding a testing image and its copies into

our framework for feature extraction, Multi-view: encoding representations from an original image and its “pseudo” multiple
views. We can see that performances on all metrics benefit from “pseudo” multi-view inputs.

Method VeRi-776

Small Medium Large

tmAP [imAP [ Top-1

Top-1]Top-5

Top-1]Top-5 | Top-1]Top-5

Single-view | 85.8 | 80.4 | 95.8

86.7

96.9 | 82.7 | 94.9 | 79.8 | 93.0

Multi-view | 86.0 | 80.9 | 96.2

86.8

97.3 | 834 | 95.8 | 80.6 | 93.1

To demonstrate the robustness of our approach, we conduct
experiments of adjusting some critical hyperparameters, i.e.,
the temperature coefficient 7, the margin of Triplet loss m,
and the number of input views M, on VeRi-776. Grid search is
used to tune these hyperparameters, and corresponding results
are listed in Table [VI Note that our final selections for these
hyperparameters are 7 = 16.0, M = 3, and m = 0.7. We
adjust only one of them in each experiment and keep others
identical to their final values. Each section of Table gives
results of tuning one hyperparameter. Very small performance
changes are seen from this Table when adjusting these hyper-
parameters heavily. Namely, our approach is sufficiently robust
to the adjustment of key hyperparameters.

C. Visualizations

To verify the superiority of our framework qualitatively, we
show its correlation learning visualization, retrieval rankings,
and performance oscillation of random trails in this section.

Part-wise Correlation Discovery across Views. To visualize
the results of our inter- and inner-view correlation learning,
we cover the learned feature maps on the input samples to
show where the framework pays more attention. Concretely,
we first obtain the patch tokens yielded by the last transformer
layer during feedforward. Then the feature dimensions of these

TABLE VI: Results of hyperparameter adjustment on VeRi-
776, w.r.t. the temperature coefficient 7, the margin of Triplet
loss m, and the number of input views M. The stable
performances demonstrate the excellent robustness of our
framework.

Hyperparameters | tmAP | imAP | Top-1

T =10.0 85.9 | 80.9 | 96.1
7 =50.0 85.7 | 80.5 | 96.0
7 = 100.0 85.7 | 80.5 | 96.1
M =2 85.8 | 80.5 | 959
M =4 84.8 | 79.3 | 95.5
m = 0.5 85.3 | 80.1 | 96.2
m = 0.6 85.6 | 80.4 | 96.2
m = 0.8 85.9 | 80.6 | 96.2
Ours 86.0 | 80.9 | 96.2

embeddings are squeezed by summation. Through reshaping
and upsampling operations, we recover their spatial resolutions
and place them on top of the input multi-view images after
colorization, as illustrated in Figure [T} Every triplet inputs
from the same vehicle are displayed in one row.

Obviously, our framework is capable of discovering discrim-
inative parts from each view image successfully. Surprisingly,
these automatically detected vehicle parts, e.g., lights and
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Fig. 4: Performance oscillation of random ten trials of the
Baseline (a) and our approach (b) on VeRi-776. We conclude
that learning comprehensive vehicle representations from mul-
tiple views through transformer-based part-wise correlation
modelling can apparently stabilize the training process and
finally contribute to consistent performances at random run-
ning.

windows, are highly consistent with those manually annotated
by other works [[7]. It releases one of the important reasons
why our approach performs better than other competitors.
Furthermore, it can be seen that our framework performs
inter- and inner-view correlation learning among vehicle parts
successfully. On one hand, various vehicle parts activate high
responses in one view image, e.g., the annual inspection sign
(the right-upper corner of the front window) and the left win-
dow in the middle image of the first vehicle, the left and right
back lights in the middle image of the second individual. These
parts contain instance-specific information for condensing ID
representations through inner-view correlation learning. On the
other hand, the identical vehicle parts, if visible from multiple
viewpoints, are focused on. For example, almost identical
locations on the back of the last vehicle are discovered from
the left and right image. The back lights of the second vehicle

are detected from the left and middle image. Similarly, the
texts on the back of the first vehicle are highlighted from the
left and right image. All these suggest that perfect part-wise
interdependencies among views are modelled implicitly by our
approach.

Qualitative Comparison of Ranking Results. To validate the
power of our approach in distinguishing vehicles qualitatively,
we compare our ranking results with those of the Baseline
method when retrieving the same query image. For each one,
we predict a sorted list of all gallery images according to their
similarities with the query in embedded space. The closer the
image is to the query one, the higher it will be ranked. Here we
just show the top 20 candidates for each query due to the space
limitation. The rankings of the Baseline (left) and ours (right)
are shown in Figure [3] Query images (indicated by green
boxes) of the same row are identical. Candidates circled by
red boxes are false items, i.e., they belong to different vehicles
with the corresponding query. We can see that there are many
negative distractors which have extremely similar appearances
but actually distinct IDs with the query in the gallery set.
They can not be distinguished by the Baseline correctly, even
humans. Thus they are placed at very high ranking positions by
mistake in the left column. In contrast, our framework is able
to identify true positive candidates successfully from those
negative distractors by modelling intrinsic relationships among
discriminative vehicle parts.

Consistent Performances of Random Trials. As mentioned
before, many researchers noticed the problem of unstable RelD
performances at different running regarding their methods,
while none of them released their results of multiple random
trials. To demonstrate the great stability and reliability of
our framework, we provide the results of the Baseline and
ours for ten random trials on VeRi-776 in Figure fa] and
[b] respectively. We provide tmAP, imAP, and Top-1 accu-
racy of two approaches and choose bar charts to visualize
these numbers for better comparing their fluctuations. These
trials are conducted by setting different randomness seeds
for the whole RelD system. We can see that our framework
achieves almost identical performances at each trial and thus
the results are easily reproduced by random running. This
demonstrate that our approach of capturing comprehensive
vehicle representations from multiple views by modelling
part-wise correlations is superior on stabilizing RelD feature
learning.

D. Cross-dataset Transferring

To verify the generalization ability of our framework, we
perform a cross-dataset testing using our learned model on
the source dataset without any fine-tuning on the target one.
Moreover, we compare the results with those of the fully super-
vised method proposed in VERI-Wild [63]. From Table [VII]
our results for imAP and Topl accuracy are generally better
than VERI-Wild but worse for Top5. At least, both methods
are comparable. Note that VehicleID is a relatively smaller
dataset and the results of VERI-WILD are obtained under
fully supervised training. This comparison does demonstrate
the excellent scalability of our method.
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TABLE VII: Our domain transferring results from VehicleID
to VERI-Wild. DT: directly transferring, FST: Fully Super-
vised Training. Overall, our approach can beat the fully su-
pervised method proposed in VERI-Wild even without seeing
the training data.

Scale Ours (DT) VERI-Wild (FST)
imAP [ Top-1]Top-5 [imAP | Top-1 | Top-5

Small {355 | 63.6 | 79.3 | 35.1 | 64.0 | 82.8
Medium | 31.6 |58.5 | 74.8 | 29.8 | 57.8 | 78.3
Large |26.1 |51.5 | 68.2 | 22.8 |49.4 | 70.5
Mean | 31.1 | 57.9 | 74.1 | 29.2 | 57.1 | 77.2

V. CONCLUSION

In this paper, we propose a novel transformer-based RelD
framework which is capable of extracting vehicle representa-
tions from multiple views through exploiting part-wise corre-
lation. To cope with the difficulty of optimizing a transformer
directly on a small RelD dataset, we present an efficient
one, composed of a distillation token and a noise token for
encouraging the knowledge distillation from the convnet to
MHSA layers and classification entropy maximization, respec-
tively. We perform comprehensive experiments on three widely
used vehicle ReID benchmarks. Quantitative performances and
qualitative visualizations demonstrate the superiority of our
framework.
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