
LodoNet: A Deep Neural Network with 2D Keypoint Matching
for 3D LiDAR Odometry Estimation
Ce Zheng

czheng6@uncc.edu
The University of North Carolina at Charlotte

Yecheng Lyu
ylyu@wpi.edu

Worcester Polytechnic Institute

Ming Li
mli12@wpi.edu

Worcester Polytechnic Institute

Ziming Zhang∗
zzhang15@wpi.edu

Worcester Polytechnic Institute

ABSTRACT
Deep learning based LiDAR odometry (LO) estimation attracts
increasing research interests in the field of autonomous driving and
robotics. Existing works feed consecutive LiDAR frames into neural
networks as point clouds and match pairs in the learned feature
space. In contrast, motivated by the success of image based feature
extractors, we propose to transfer the LiDAR frames to image space
and reformulate the problem as image feature extraction. With
the help of scale-invariant feature transform (SIFT) for feature
extraction, we are able to generate matched keypoint pairs (MKPs)
that can be precisely returned to the 3D space. A convolutional
neural network pipeline is designed for LiDAR odometry estimation
by extracted MKPs. The proposed scheme, namely LodoNet, is then
evaluated in the KITTI odometry estimation benchmark, achieving
on par with or even better results than the state-of-the-art.

KEYWORDS
Vehicle localization; LiDAR processing; Deep learning

ACM Reference Format:
Ce Zheng, Yecheng Lyu, Ming Li, and Ziming Zhang. 2020. LodoNet: A
Deep Neural Network with 2D Keypoint Matching for 3D LiDAR Odometry
Estimation. In 28th ACM International Conference on Multimedia (MM ’20),
October 12–16, 2020, Seattle, WA, USA.. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3394171.3413771

1 INTRODUCTION
Odometry estimation is one of the key components in the auto-
mated driving systems and robotics. In recent years, autonomous
driving has attracted significant research interests and several
works have been proposed to estimate the position and orienta-
tion of the autonomous vehicles. Multiple sensors are deployed
to collect relative data including monocular cameras, inertial mea-
surement units (IMU), and light detection and ranging (LiDAR).

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’20, October 12–16, 2020, Seattle, WA, USA.
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7988-5/20/10. . . $15.00
https://doi.org/10.1145/3394171.3413771

Camera is first selected for odometry estimation because it is cost
efficient and there exist well-studied image feature extractors to
support. However, camera based methods such as VINS-Mono[22],
DVSO[35], and GANVO[1] highly subject to the accuracy of camera
calibration, and it is difficult to transfer from image feature pairs
to coordinate correspondents between frames. Comparing with
cameras, LiDARs take advantage of accurate distance acquisition
and insensitive to the light condition. Therefore, LiDAR odometry
(LO) attracts increasing research interests. Several works have been
proposed to solve the vehicle odometry estimation using LiDAR
data. They mainly follow two approaches. The first one performs
traditional set-to-set registration that extracts features from the en-
tire point cloud and register one to another. This approach includes
LOAM[38] and ICP[6][26][13]. However, those approach only focus
on the global features without capturing the local pattern, which
limits its accuracy. The other approach use neural networks to
extract local and global features and try to estimate the vehicle
odometry through matching the feature vectors. However, Esti-
mating odometry directly from large amount of 3D points is not
only challenging but also computationally expensive. Motivated
by the success of image feature extractors, we intuitively raise the
question:

Can we extract features from the LiDAR point clouds using im-
age feature extractors so that the coordinate correspondences can be
established through matching points in image feature space?

Fortunately, Lyu et al. [17, 18] and RangeNet++ [19] have in-
troduced an algorithm to project the LiDAR data on to a spherical
view so that a LiDAR point cloud with geometry features can be
transferred to an image-like feature map with minor point losses.
By employing this projection, we can efficiently generate image
representations of LiDAR frames for feature extraction.

In this paper, we propose a deep neural network architecture to
estimate the vehicle odometry from LiDAR frames. we first project
the sparse LiDAR point clouds to spherical depth images with depth
completion to tackle the sparse issue. We than apply the classic
keypoints detection and matching algorithm to the 2D spherical
depth images. The extracted matched keypoint pairs(MKPs) on
2D spherical image space can be projected back to the 3D LiDAR
space by the inverse projection function. Figure 1 illustrates that
the MKPs extracted by our method are accurate and reliable on 3D
LiDAR space. Inspired by the recent works on deep learning-based
Visual Odometry (VO) estimation and the promising performance
of PointNet[21] on point cloud segmentation and classification, we

https://doi.org/10.1145/3394171.3413771
https://doi.org/10.1145/3394171.3413771

construct our deep neural network architecture to estimate LiDAR
odometry using extracted MKPs as illustrated in Figure 2.

To summarize, our main contributions are:

• We propose a new approach for extracting matched keypoint
pairs(MKPs) of consecutive LiDAR scans by projecting 3D
point cloud onto 2D spherical depth images where MKPs
can be extracted effectively and efficiently. After projecting
back to 3D LiDAR space, the extracted MKPs can be used for
LiDAR odometry estimation.
• By utilizing the PointNet structure, which provide strong per-
formance over point cloud tasks, We adopt our convolutional
neural network architecture to infer the rotation informa-
tion and translation information from extracted MKPs of
consecutive scans.
• The evaluation of our experiments and ablation studies on
KITTI Odometry estimation benchmark[9] demonstrate the
effectiveness of the proposed method.

2 RELATEDWORK
LiDAR feature extraction in 2D space.

LiDAR feature extraction is one of the essential tasks of LiDAR-
based applications. Since the raw data from the LiDAR sensors are
not well structuralized and ordered, an intuitive way is to project
the LiDAR points onto a 2D space. LoDNN [5] is a pioneering
work that projects all LiDAR points onto the ground plane and
samples them to an image-like array. In this work, however, the
LiDAR points are not uniformly distributed on the ground plane but
heavily gathered together near the LiDAR scanner, which results
in massive dropped points in the near-range and redundant space
in the far-range. Lyu et al. [17, 18] and RangeNet++ [19] improve
the projection scheme by replacing the target plane with a sphere
surface, in which LiDAR points are nearly uniformly distributed.
SqueezeSeg V1 [33], V2 [34], and LO-Net [12] also employ this
projection scheme and result in a good performance in LiDAR
point semantic segmentation. In our work, we follow the projection
scheme of RangeNet++ to generate a 2D LiDAR feature map for
each LiDAR frame.
Image feature extraction and keypoint detection.

Image feature extraction and keypoint detection have been stud-
ied for decades. Scale-invariant feature transform (SIFT) [14] is
one of the popular feature extraction algorithms in the image pro-
cessing domain. By transforming an image into a large group of
feature vectors that are invariant to image translation, scaling, and
rotation, SIFT generates robust feature vectors on parts captured
in different views. Other feature extraction methods include SURF
[2] and ORB [24], however, they cannot generate robust feature
vectors on LiDAR frames. In our work, we employ the SIFT as our
LiDAR feature extractor.
Registration and feature-based vehicle odometry estimation.

Iterative Closet Point (ICP)[3] method and its variants[20][7][23]
have been used in the field of LiDAR based pose estimation widely.
In the ICP algorithm, a transformation between point clouds of
adjacent scans is optimized iteratively by minimizing distance un-
til a specific termination condition is met. Despite its popularity,
ICP is sensitive to the initial poses and computationally expensive.

Multiple variants of ICP algorithms such as point-to-line ICP[6],
point-to-plane ICP[13], and plane-to-pane ICP[20] were developed.
GICP[26] was proposed by combining point-to-point ICP and point-
to-plane ICP into a single probabilistic framework. A probabilistic
model is attached to the minimization step which can reduce the
time complexity and increase the robustness to incorrect corre-
spondences. Collar Line Segments (CLS)[29] transforms the LiDAR
scans into line could then generates line segments within each
bin. This pre-processing method produces better results than GICP.
However, due to the high computational cost in line segments, CLS
cannot achieve real-time odometry estimation.

The state-of-art LiDAR Odometry estimation method: LiDAR
Odometry And Mapping(LOAM)[38] was proposed by Zhang and
Singh, which achieves both low-drift in motion estimation and
low-computational complexity. The key idea is to divide the com-
plex problem of Simultaneous Localization and Mapping into two
parallel algorithms. One algorithm performs odometry at a high
frequency but at low fidelity to estimate the velocity of the laser
scanner. A second algorithm runs at an order of magnitude lower
frequency for fine matching and registration of the point cloud.
Deep Learning-based vehicle odometry estimation.

In recent years, several works have been done exploring the use
of neural networks in vehicle odometry estimation. DeepVO[31],
DVSO[35], Depth-VO-Feat[37], andGANVO[1] have achieved promis-
ing results on Visual odometry(VO) estimation. In VO tasks, Camera
data are used. However, applying deep learning method to solve 3D
LiDAR odometry problem still remains challenges. DeepICP[15] de-
tects the keypoints by a point weighting layer, and then generates a
search region for each keypoint. A matched point can be generated
by the corresponding point generation layer. The odometry is finally
estimated by solving the SVD from the matched keypoint pairs.
DeepPCO[32] generates panoramic-view of depth image projection
to feed to it neural networks. L3-Net [16] proposes a learning-based
LiDAR localization system by comparing the network-based feature
vector between the current LiDAR frame and pre-build point cloud
map followed by a recurrent neural network based smoothness
module. LO-Net[12] is another learning-based odometry estima-
tor. Different from L3-Net that only extracts point-wise features,
LO-Net projects the points onto a sphere surface and builds an
image-like feature map for each LiDAR frame. For better training
the odometry estimator, LO-Net introduces an attention branch to
predict if the geometric consistency of an area in the feature map
can be modeled or not.

3 METHOD
3.1 Problem Setup
We are given a collection of training samples {(X𝑡 ,X𝑡+1, y𝑡)}𝑡 ∈T
where X𝑡 ⊆ R3 denotes the set of keypoints from the 𝑡-th LiDAR
scans, y𝑡 ∈ Y ⊆ R6 denotes the ground-truth odometry between
the 𝑡-th and (𝑡+1)-th LiDAR scans, andT denotes the scan index set.
Our goal is to learn an odometry prediction function 𝑓 : X × X →
Y ∈ F by minimizing certain loss function ℓ : Y ×Y → R, i.e.,

min
𝑓 ∈F

∑
𝑡 ∈T

ℓ (𝑓 (X𝑡 ,X𝑡+1), y𝑡) . (1)

(a) (b)

Figure 1: Illustration ofMKPs detected by ourmethods. (a): The point cloud of 𝑖+1’s LiDAR scan, blue points are the keypoints detected by SIFT on the coordinate
frame of 𝑖 + 1’s scan. (b): Black points are the MKPs of the blue points from the 𝑖′𝑠 scan and projected to the 𝑖 + 1′𝑠 coordinate frame. The black points are expected
to overlap to their paired blue points since they are match points projected to the same coordinate frame. Lines are aligned for each matched pair (blue point and
paired black point). Here these lines are invisible because of overlapping.

Figure 2: LodoNet Architecture:Depth spherical images of the LiDAR point clouds can be obtained by the projection procedure. The matching keypoint pairs
(MKPs) is extracted by the feature extraction algorithm:SIFT on the depth images than projected back to 3D LiDAR space. The MKPs Selection Module takes
𝑛 MKPs of consecutive scans as input. It can generate a Ranking Matrix [𝑛, 1] of the input 𝑛 MKPs, then we choose the best 𝑘 MKPs by their ranking as the
input for rotation and translation estimation. The Rotation Estimation Module and Translation Estimation Module predict the rotation pose and translation pose
respectively.Dotted line indicate two blocks are identical.

Note that Eqn. 1 holds in general for all the LiDAR odometry es-
timation algorithms. To simplify our explanation later, here we
assume that the feasible space F is proper, closed, and convex
(PCC) that covers all the constraints on 𝑓 such as regularization.
At test time, given two sets of keypoints X𝑡 ′,X𝑡 ′+1, we can predict
their odometry as 𝑓 (X𝑡 ′,X𝑡 ′+1).

3.2 Formulation
As we know, odometry has 6 degrees of freedom (DOF). This leads
to the fact that odometry can be estimated given at least 3 matched
keypoint pairs (MKPs). Therefore, instead of learning the general
function 𝑓 in Eqn. 1 directly, in the literature it will be more plau-
sible to decompose it as two functions, i.e., 𝑓 = ℎ ◦ 𝑔 where ◦

denotes the function composition. The keypoint matching func-
tion, 𝑔 : X𝑡 × X𝑡−1 → P𝑡 × P𝑡−1 ⊆ R3 × R3, generates MKPs
from the input keypoint sets, and the odometry regression function,
ℎ : P𝑡 × P𝑡−1 → Y, predicts the odometry based on the MKPs.
Odometry estimation algorithms are all about how to design or
learn such functions 𝑔, ℎ to determine function 𝑓 .
ICP-based learning approaches. Iterative Closest Point (ICP) [4]
matches two sets of points iteratively as well as estimating the pose
transformation byminimizing distances between the corresponding
matched points until it converges. Although ICP is well-known for
point registration, the high computation and sensitivity to initial
poses significantly limit its applications. The key idea behind ICP-
based learning approaches for LiDAR odometry estimation is to use
ICP to locate MKPs (given the current odometry regression function

ℎ) that are used to update ℎ further. In general, such approaches
can be formulated as follows:

min
ℎ∈H

∑
𝑡 ∈T

ℓ (ℎ(P𝑡 ,P𝑡+1), y𝑡), 𝑠 .𝑡 . P𝑡 ,P𝑡+1 = 𝑔(X𝑡 ,X𝑡+1, ℎ(P𝑡 ,P𝑡+1))

(2)

where 𝑔 : X × X × Y → P × P denotes a variant of the keypoint
matching function, and the feasible spaceH is PCC.

The constraint here models the MKPs as the stationary solution
given current ℎ, which can be viewed as a generalization of ICP.
Then such solutions are used to update ℎ in the objective by mini-
mizing the loss. At training time this procedure is repeated until it
converges. At test time, given 𝑔 and learned ℎ we use the constraint
to locate the MKPs and then output the odometry estimation as
ℎ(P𝑡 ′,P𝑡 ′+1).

Q𝑖 =



𝑥2
𝑖,1 + 𝑥2

𝑖,2 −𝑥𝑖,2𝑥𝑖,3 −𝑥𝑖,1𝑥𝑖,3 𝑥𝑖,2 −𝑥𝑖,1 0
−𝑥𝑖,2𝑥𝑖,3 𝑥2

𝑖,1 + 𝑥2
𝑖,3 −𝑥𝑖,1𝑥𝑖,2 −𝑥𝑖,3 0 𝑥𝑖,1

−𝑥𝑖,1𝑥𝑖,3 −𝑥𝑖,1𝑥𝑖,2 𝑥2
𝑖,2 + 𝑥2

𝑖,3 0 𝑥𝑖,3 −𝑥𝑖,2
𝑥𝑖,2 −𝑥𝑖,3 0 1 0 0
−𝑥𝑖,1 0 𝑥𝑖,3 0 1 0

0 𝑥𝑖,1 −𝑥𝑖,2 0 0 1


(3)

q𝑖 =



𝑦𝑖,1𝑥𝑖,2 − 𝑦𝑖,2𝑥𝑖,1
−𝑦𝑖,1𝑥𝑖,3 + 𝑦𝑖,3𝑥𝑖,1
𝑦𝑖,2𝑥𝑖,3 − 𝑦𝑖,3𝑥𝑖,2

𝑥𝑖,1 − 𝑦𝑖,1
𝑥𝑖,2 − 𝑦𝑖,2
𝑥𝑖,3 − 𝑦𝑖,3


(4)

[
𝛼, 𝛽,𝛾,𝑏1, 𝑏2, 𝑏3

]⊤
= −

[∑
𝑖

Q𝑖

]−1 ∑
𝑖

q𝑖 (5)

Our LodoNet. As we see in Eqn. 2, the odometry regression func-
tion ℎ and the keypoint matching function 𝑔 in ICP-based learning
approaches are essentially coupled. This potentially can lead to two
serious problems, at least, in training, i.e., high computation and
non-convergence of the training loss.

To address such problems, our methodology in LodoNet is to
decouple functions 𝑔, ℎ to avoid the loop as well as significantly
improve the convergence. To this end, we propose the following
optimization problem:

min
𝑧∈Z,ℎ̃∈H̃

∑
𝑡 ∈T

ℓ (ℎ̃(P𝑡 ,P𝑡+1, 𝑧 (P𝑡 ,P𝑡+1)), y𝑡),

𝑠 .𝑡 . P𝑡 ,P𝑡+1 = 𝑔(X𝑡 ,X𝑡+1), (6)

where 𝑧 : P × P → Π denotes an attentional function that returns
probability vectors over the MKPs in the simplex space Π, ℎ̃ : P ×
P ×Π → Y denotes a variant of the odometry regression function,
and both spacesZ, 𝐻̃ are PCC.

Different from ICP-based learning approaches, here we use a pre-
defined keypoint matching function 𝑔 to extract MKPs from LiDAR
data (i.e., constraint), and feed these MKPs as input to the learning
algorithm directly to minimize the objective. In this way, there is
no loop between 𝑔 and ℎ̃ (i.e., decoupling). The quality of the MKPs,
however, cannot be guaranteed to be good for odometry estimation.
Therefore, we deliberately introduce the attentional mechanism to
assign weights for estimation. In fact, Eqn. 6 is an unconstrained

Algorithm 1 Depth Completion

INPUT: valid pixel set P1 = {p1 }, void pixel set P0 = {p0 }
OUTPUT: filled pixel set P0 = {p0 }
1: For Each p0 in P0 :
2: p′ ∈ arg minp1∈P1 { | |p0 − p1 | | } ,
3: p0 ← p∗
4: End
5: Return P0

minimization problem with convergence guarantee using alternat-
ing optimization (i.e., learning 𝑧 while fixing ℎ̃, and then learning ℎ̃
while fixing 𝑧), in general, as (P𝑡 ,P𝑡+1),∀𝑡 ∈ T now are the inputs.
At test time we predict the odometry as ℎ̃(P𝑡 ,P𝑡+1, 𝑧 (P𝑡 ,P𝑡+1)).

3.3 Data prepossessing
Depth spherical image generation from LiDAR point clouds.

The 3D LiDAR point clouds are usually stored by a set of Carte-
sian coordinates (𝑋,𝑌, 𝑍). Due to the relative low resolution of
LiDAR scanners, the 3D LiDAR point clouds are quite sparse. A
scan of the LiDAR point cloud is shown in Figure 3a. However,
matching keypoints pairs from two consecutive scans of LiDAR
point clouds would be inaccurate and time/memory consuming.
Therefore, we project the sparse LiDAR point clouds to spherical
projection images that are nearly dense. The projection function is:

𝛼 = arcsin(𝑧√
𝑥2 + 𝑦2 + 𝑧2

), 𝛼 = | 𝛼
Δ𝛼
| (7)

𝛽 = arcsin(𝑦√
𝑥2 + 𝑦2

), 𝛽 = | 𝛽
Δ𝛽
| (8)

Where 𝛼 and 𝛽 are the indexes of points’ position in the matrix. Δ𝛼
and Δ𝛽 are the angular resolutions in the horizontal and vertical
directions, respectively. The element at (𝛼, 𝛽) of the spherical image
is set to be the range value 𝑟 =

√
𝑥2 + 𝑦2 + 𝑧2 of the LiDAR point

(𝑥,𝑦, 𝑧) [12]. A matrix of size𝐻×𝑊 ×𝐶 can be obtained by applying
this projection. 𝐻 is the number of vertical channels from LiDAR
scanners,𝑊 is the width of the spherical image, and𝐶 is the channel
of input point cloud matrix. Figure 3b shows the spherical image of
the LiDAR scan in Fig 3a.
Depth completion and histogram equalization.

In depth completion we aim to fill the void pixels in our pro-
jected spherical image, so that every pixel can be utilized in the
following algorithms. Traditional image inpainting algorithms try
to interpolate the target pixels using surrounding pixel color values,
which is computational expensive for real-time processing. In this
paper, based on the assumption that depth value does not change
much in local regions, we speed up the depth completion by filling
the void pixels with the depth value of its nearest valid pixels. The
algorithm is described in algorithm 1.

As shown in the Figure 3b, the value in each pixel represents the
distance of the original LiDAR detected point to the LiDAR that
causes the most pixels in the spherical image to have a relatively
small value. To improve the spherical image’s visual quality, we
apply the histogram equalization technique in order to enhance
the contrast as shown in Figure 3c. Histogram equalization is the
most popular contrast enhancement technique due to its simplicity

(a) Point Cloud of one LiDAR scan

(b) Original spherical image of one scan of LiDAR Point

(c) Depth spherical image of the original spherical image

(d) Histogram equalization of the original spherical image

(e) Histogram equalization of the depth completion spherical image

Figure 3: The spherical image of one LiDAR scan

and effectiveness [10]. This widely used technique is achieved by
flattening the dynamic range of an image’s histogram of grey value
based on the probability density function [27]. After we generate
the depth completion spherical image in Figure 3d , we apply the
Histogram equalization. Therefore, the brightness of the depth
completion spherical image is improved significantly as shown in
the Figure 3e.
Keypoints detection and matching.

After the depth completion and histogram equalization step,
we want to detect a group of MKPs from consecutive frames of
spherical images 𝑓𝑖 and 𝑓𝑖+1. For example, one keypoint is shown
in 𝑓𝑖 at the location (𝑥1, 𝑦1) and its matching point is located at
(𝑥1 ′, 𝑦1 ′) in 𝑓𝑖+1. Since this MKP represents the same object in
consecutive frames, the potential odometry information between
these consecutive frames is related to their location in spherical
images. Thus, we apply the SIFT algorithm to detect keypoints in
consecutive frames of spherical images. This local feature extraction
method can extract comprehensive keypoints which are invariant to
the object translation and rotation. Each detected keypoint will be
represented as a 128−element feature vector, called by descriptors
[8]. The feature vectors will be used for keypoint matching.

Given a keypoint from depth completion image 𝑓𝑖 , we want to
find the best matching point in 𝑓𝑖+1 to form the MKP. The similarity
will be measured by the Euclidean distance between keypoints in
the spherical image [28]. In Figure 4a, two consecutive scans are
concatenated vertically. The Figure 4b shows the top 400 MKPs
detected from these consecutive scans. However, some MKPs are
mismatched or not suitable for odometry estimation. For example,
we do not want to use any point from dynamic objects. Figure 4c
illustrates the 100 MKPs selected by MKP Selection module among

the 1000 MKPs detected in this section. We will discuss this issue
in section 3.4.
Projecting back to 3D point cloud.

It is simple to project MKPs in the spherical image back to 3D
point clouds. Noticed that the MKPs were detected from depth
completion spherical image, some MKPs may not have correspond-
ing points in the original 3D space. In other words, some “fake”
MKPs are generated by depth completion, not from original LiDAR
points. These “fake” MKPs are removed and only real MKPs return
the points coordinate in 3D space. The MKPs which related to the
odometry rotation and translation are extracted from entire LiDAR
points of consecutive frames. Then we aligned the points in frame
𝑓𝑖 with their matching points in frame 𝑓𝑖+1 to construct a matrix
with the size of [𝑚, 6] where𝑚 is the number of MKPs we find, and
6 features represent the 𝑥 , 𝑦, 𝑧 coordinates of matching points in
consecutive frames.

3.4 LiDAR odometry regression
MKPs Selection module.

In Section 3.3, we extract MKPs of consecutive frames which
contain the odometry rotation and translation information. How-
ever, some of MKPs are inappropriate for odometry estimation. We
want to exclude those MKPs from dynamic objects such as moving
cars. Even though matching are good, these MKPs may inhibit the
odometry estimation due to the inconsistent odometry information
of dynamic objects with LiDAR device. Hence a selection module
is needed to determine whether a matching point should be used
for odometry estimation.

we deploy a MKPs Selection module to solve this segmentation
problem in order to improve the effectiveness and robustness of
the network. Here we use the PointNet segmentation structure to

(a) 2 consecutive frames of LiDAR scans

(b) Top 400 MKPs detected by SIFT

(c) 100 MKPs selected by MKPs Selection Module

Figure 4: MKPs extracted from consecutive LiDAR scans

Algorithm 2 Data Augmentation on Odometry Rotation

INPUT: Point cloud pair P1, P2 , odometry Matrix Ground Truth𝑇𝑟 , augmentation
rotation upper-bound 𝑏𝑒𝑡𝑎𝑚𝑎𝑥

OUTPUT: Augmented point cloud pair P′1, P′2 , augmented odometry Matrix Ground
Truth𝑇𝑟 ′

𝛽 ← 𝑅𝑎𝑛𝑑𝑜𝑚 (−𝛽𝑚𝑎𝑥 , 𝛽𝑚𝑎𝑥)
𝑇𝑟1← 𝑌𝑎𝑤 (𝛽)
𝑇𝑟 ′ ← [𝑇𝑟]−1P2
P′1 ← P1
P′2 ← 𝑇𝑟1P1
Return P′1, P′2,𝑇𝑟 ′

achieve the goal. The PointNet consists of symmetry function for
unordered input, a local and global information aggregation, and a
joint alignment network. In our MKPs Selection module, we modify
several parts to fit our scenario. T-Net structure has been removed
since we don’t want to preserve the rotation invariant. The input are
MKPs of consecutive frames, not original unordered points. For the
output𝑀𝑆 (𝑃𝑖) ∈ [0, 1], ground truth odometry which containing
rotation 𝑅 and translation 𝑇 information are used to calculate the
distance of the point in frame i with its matching point’s projection
in frame i by the following equation:

𝑑 = ∥
[
𝑅 𝑇

0 1

]
X𝑖 − X𝑖+1∥2 (9)

The output is set as 1 if the distance is small while large distance
indicates the output is 0. MKPs with label 1 will be use in the
odometry estimation.
Rotation Estimation module.

After selecting a fixed number ofMKPs, we aim to infer the 3-DoF
relative odometry rotation information by constructing a regression
model. By observing popular autonomous driving datasets with
LiDAR odometry task, recording cars usually go straight line while
turning frames are not enough. Hence, we apply a data augmenta-
tion procedure for rotation estimation. Because each matching pair

associate with the 3-DoF odometry rotation information R, the Eqn.
3 represents the relation between matching pairs with a rotation
matrix. We can generate the augmented MKPs with corresponding
rotation matrix by given the existing MKPs with their rotation
matrix based on the Algorithm 2.

The structure of rotation estimation module is based on the
PointNet classification model while we change it to the regression
model. We remove the T-net structure and add our rotation aug-
mentation structure. The input of the Rotation Estimation module
is selected MKPs from the MKPs Selection module concatenate
with rotation augmentation of selected MKPs. The output is the
Unit Quaternion format of the odometry rotation information. The
Unit Quaternion of two consecutive frames can be represented by
a vector [𝑎, 𝑏𝑖, 𝑐 𝑗, 𝑑𝑘], where a, b, c, and d are real numbers, and i,
j, and k are the fundamental Quaternion units [25]. Based on the
norm of the Unit Quaternion vector is equal to 1, here we only
predict the first three dimension of Unit Quaternion and the last
dimension can be calculated afterwards. The rotation loss function
of consecutive frames is defined as:

L𝑅 = ∥𝑄 − 𝑄̂ ∥𝑙 (10)

Where 𝑄 is the ground truth first three dimension of Unit Quater-
nion, 𝑄̂ is the predicted first three dimension of Unit Quaternion
by the network, and 𝑙 refers to the Euclidean distance norm. Here
we choose the 𝑙2 norm in this module.
Translation Estimation module.

The network structure of Translation estimation module is quite
similar to the Rotation Estimation module. In contrast, we directly
apply the selected MKPs as input to feed the Translation Estimation
module since the translation augmentation is not required. The
output is the 3-DoF odometry translation information and the loss
function is defined as:

L𝑇 = ∥𝑇 −𝑇 ∥𝑙 (11)

Where 𝑇 is the ground truth translation matrix, 𝑇 is the predicted
translation array by the network, and 𝑙 refers to the Euclidean
distance norm. Here we choose the 𝑙2 norm in this module.

4 EXPERIMENTS
4.1 Implementation detail
In our experiment, we use the point cloud data which is collected by
the Velodyne HDL-64 3D LiDAR sensor to estimate the odometry.
When converting the LiDAR point clouds to spherical images, we
set the height of the image to 64 and the width to 1024. For each two
consecutive scans 𝑓𝑖 and 𝑓𝑖+1, we detect MKPs on spherical images
then convert back to 3D space. In a sequence of point clouds with
𝑛 + 1 scans, we can collect 1000 MKPs for 𝑛 consecutive frames to
form an input matrix [𝑛, 1000, 6]. LodoNet predicts the odometry
between n consecutive frames and give an output as [𝑛, 7], then
we can calculate the odometry matrix [𝑛, 12] indicating each scan’s
odometry by the relation of rotation and translation matrix. The
whole framework is implemented with the Tensorflow, we choose
the Adam optimizer[11] for optimization. The batch size and learn-
ing rate are set to 128 and 0.0001. MKPs Selection module select 100
MKPs among 1000 MKPs for each consecutive scans. One GeForce
RTX 2080 Ti GPU is used for training.

4.2 Dataset
KITTI. The KITTI odometry dataset[9] is a popular and widely

used dataset in the autonomous driving tasks. It provides 22 in-
dependent sequences with stereo gray-scale camera images, color
camera images, and point clouds captured by a Velodyne HDL-32
LiDAR sensor among urban, highway and countryside scenes. For
our work, we use Velodyne LiDAR data only to estimate odometry.
For sequence 0 to sequence 10, KITTI dataset provides the ground
truth odometry, while for sequence 11 to 21 the ground truth is
preserved for online benchmark testing. Hence, we use sequence 0,
1, 2, 3, 4, 5, 6, 9, and 10 to train our model while leaving sequence 7
and sequence 8 for validation.

As we state in section 3.4 that odometry has 6 degrees of freedom
which can be represented by rotation and translation components.
In the ground-truth odometry pose files provided by KITTI dataset,
a 12 by 1 vector is assigned for the odometry pose of 𝑖𝑡ℎ frame
to the 0 frame while 9 of them indicating the rotation and 3 of
them present the translation. This 9-dimension rotation vector
usually reshapes to a 3 by 3 rotation matrix. In our experiments,
we convert this 3 by 3 rotation matrix to a 1 by 4 Unit Quaternion
representation due to less dimension for network training. Noted
here we only predict first three dimension of Unit Quaternion and
the last dimension can be calculated directly since the norm of the
Unit Quaternion is equal to 1. Thus, given the input of the MKPs
of two consecutive frames, the output of our network is a 1 by 7
vector which is concatenated by a 1 by 4 rotation vector with a 1
by 3 translation vector.

4.3 Evaluation
We compared our method with the ground truth trajectory and
several LiDAR odometry estimation methods: ICP-point2point(ICP-
po2po), ICP-point2plane (ICP-po2pl), GICP[26], CLS[29], LOAM[38],
Velas et al.[30], LO-Net[12].

Table 1 shows the evaluation results of the mentioned meth-
ods on the KITTI dataset. We use 𝑡𝑟𝑒𝑙 : the Average Transnational
RMSE(%) and 𝑟𝑟𝑒𝑙 : Average Rotational RMSE(◦/100m) to evaluate
the results of different methods. There are few deep learning-based
approaches for LiDAR odometry estimation that have compara-
ble results. DeepPCO[32] only reports the results on its validation
sequences. However they did not specify the unit of 𝑡𝑟𝑒𝑙 and 𝑟𝑟𝑒𝑙 .
Based on the trajectories they provide, we determine that their 𝑡𝑟𝑒𝑙
is 2.63 and 𝑟𝑟𝑒𝑙 is 3.05 for sequence 04, and 𝑡𝑟𝑒𝑙 is 2.47 and 𝑟𝑟𝑒𝑙 is 6.59
for sequence 10 with the same unit as in Table 1. CAE-LO[36] did
not provide the results on KITTI Seq 00-10. LO-Net[12] is one of the
best deep learning methods for LiDAR based odometry estimation.
From Table 1, The Seq 07 and 08 are not used to train LodoNet. The
bold number indicates the best performance among all the methods,
and the blue number indicates the runner-up. In some sequences,
our results are even better than LOAM. However, LOAM still re-
mains the best option which is the state-of-art Geometry based
approach. Until now there is no deep learning method can beat the
LOAM algorithm, but it is clear that deep learning methods become
more and more accurate.

Figure 5: 2D estimate trajectory of our training sequences: KITTI Seq.00
(upper left), Seq.03 (upper right), Seq.09 (lower left), Seq.10 (lower right) with
ground truth.

Figure 5 shows our estimated 2D trajectory plots of our training
sequences: KITTI sequence 00, 03, 09, and 10 with ground-truth.
Figure 6a shows our estimated 2D trajectory plots of our testing
sequences: KITTI sequence 07 and 08 with ground-truth. The blue
line is our estimated trajectory and the red line is the ground truth
trajectory. Our LodoNet can produce accurate pose estimation with
respect to ground truth. The average errors of translation and rota-
tion with respect to path length interval of KITTI sequence 07 and
08 are shown in the Figure 6b and 6c respectively.

4.4 Ablation study
In this section, we investigate the effects of different factors of
our odometry estimation on the KITTI dataset. We change the

Table 1: Odometry results on KITTI dataset

ICP-po2po ICP-po2pl GICP[26] CLS[29] LOAM[38] Velas et al[30] DeepPCO[32] LO-Net[12] oursseq t_rel r_rel t_rel r_rel t_rel r_rel t_rel r_rel t_rel r_rel t_rel r_rel t_rel r_rel t_rel r_rel t_rel r_rel
00 6.88 2.99 3.80 1.73 1.29 0.64 2.11 0.95 0.78 0.53 3.02 / / / 1.47 0.72 1.43 0.69
01 11.21 2.58 13.53 2.58 4.39 0.91 4.22 1.05 1.43 0.55 4.44 / / / 1.36 0.47 0.96 0.28
02 8.21 3.39 9.00 2.74 2.53 0.77 2.29 0.86 0.92 0.55 3.42 / / / 1.52 0.71 1.46 0.57
03 11.07 5.05 2.72 1.63 1.68 1.08 1.63 1.09 0.86 0.65 4.94 / / / 1.03 0.66 2.12 0.98
04 6.64 4.02 2.96 2.58 3.76 1.07 1.59 0.71 0.71 0.50 1.77 / 2.84 3.07 0.51 0.65 0.65 0.45
05 3.97 1.93 2.29 1.08 1.02 0.54 1.98 0.92 0.57 0.38 2.35 / / / 1.04 0.69 1.07 0.59
06 1.95 1.59 1.77 1.00 0.92 0.46 0.92 0.46 0.65 0.39 1.88 / / / 0.71 0.50 0.62 0.34
07 5.17 3.35 1.55 1.42 0.64 0.45 1.04 0.73 0.63 0.50 1.77 / / / 1.70 0.89 1.86 1.64
08 10.04 4.93 4.42 2.14 1.58 0.75 2.14 1.05 1.12 0.44 2.89 / / / 2.12 0.77 2.04 0.97
09 6.93 2.89 3.95 1.71 1.97 0.77 1.95 0.92 0.77 0.48 4.94 / / / 1.37 0.58 0.63 0.35
10 8.91 4.74 6.13 2.60 1.31 0.62 3.46 1.28 0.79 0.57 3.27 / 2.41 6.70 1.80 0.93 1.18 0.45

aveage 7.36 3.41 4.74 1.93 1.92 0.73 2.12 0.91 0.84 0.46 3.15 / / / 1.33 0.69 1.27 0.66

(a) Estimated trajectory plots of KITTI Seq. 07(Left) and 08(Right) with ground truth.

(b) The average errors of translation and rotation with respect to path length interval of
KITTI Seq. 07

(c) The average errors of translation and rotation with respect to path length interval of
KITTI Seq. 08

Figure 6: Evaluation of our estimation on our testing
set:KITTI Seq. 07 and Seq. 08

observation parameter while others remain as default parameters
to evaluate our network.
Rotation augmentation in Rotation Estimation Module

In section 3.4, we clam that our rotation data augmentation
procedure contribute to estimate 3-DoF relative odometry rotation
information. We list the results of KITTI Seq. 07 and 08 in Table
2 with different rotation augmentation ratio. It proves that our
rotation data augmentation procedure can improve our network
performance and when 𝑟 = 0.05 achieves the best performance.

Table 2: Comparison of different combinations of the rota-
tion augmentation ratio.

with augmentation w/o
ratio r 0.03 0.04 0.05 0.06 augmentation
t_rel 2.99 2.48 1.86 2.09 3.77Seq 07 r_rel 1.79 1.58 1.64 1.46 2.18
t_rel 3.46 2.09 2.04 4.59 4.33Seq 08 r_rel 1.47 0.98 0.97 2.01 1.80

Table 3: Comparison of top 𝑘 MKPs choose by MKPs selec-
tion module.

Top k 50 100 200 300
t_rel 3.70 1.86 2.97 4.22Seq 07 r_rel 2.84 1.64 1.89 2.28
t_rel 3.20 2.04 5.38 4.09Seq 08 r_rel 1.65 0.97 2.04 2.00

Number of MKPs selected by MKPs Selection Module
As we state in section 4.1, we extract 1000 MKPs on consecutive

spherical images. We compare the results on KITTI Seq. 07 and 08
with different numbers as shown in the Table 3. When choosing
100 MKPs, the network achieves the best performance.

5 CONCLUSIONS
In this paper,we present a novel deep learning-based LiDAR odom-
etry estimation framework named LodoNet. Within the framework
we propose a new approach that extract the matched keypoint
pairs(MKPs) by applying conventional image-based feature de-
scriber from projected LiDAR images. With the help of PointNet,
we adopt the MKPs to estimate the movements between the LiDAR
frames, which finally result in the LiDAR odometry estimation.
Experiments on KITTI dataset demonstrate the effectiveness of our
framework compared with existing deep learning approaches. More
over, since our framework is mainly integrated by a conventional
feature describer and a light-weighed neural network, which can
be easily deployed to the automated driving systems without allo-
cating many computational resources. In our future work, we are
going to explore how to further integrate the MKPs extraction and
odometry estimation steps for a more accurate and efficient LiDAR
odometry estimator.

REFERENCES
[1] Yasin Almalioglu, Muhamad Risqi U. Saputra, Pedro P. B. de Gusmao, Andrew

Markham, and Niki Trigoni. 2018. GANVO: Unsupervised Deep Monocular
Visual Odometry and Depth Estimation with Generative Adversarial Networks.
CoRR abs/1809.05786 (2018). arXiv:1809.05786 http://arxiv.org/abs/1809.05786

[2] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. Surf: Speeded up robust
features. In European conference on computer vision. Springer, 404–417.

[3] P. J. Besl and N. D. McKay. 1992. A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence 14, 2 (1992), 239–256.

[4] Paul J Besl and Neil D McKay. 1992. Method for registration of 3-D shapes. In
Sensor fusion IV: control paradigms and data structures, Vol. 1611. International
Society for Optics and Photonics, 586–606.

[5] Luca Caltagirone, Samuel Scheidegger, Lennart Svensson, and Mattias Wahde.
2017. Fast LIDAR-based road detection using fully convolutional neural networks.
In 2017 ieee intelligent vehicles symposium (iv). IEEE, 1019–1024.

[6] A. Censi. 2008. An ICP variant using a point-to-line metric. In 2008 IEEE Interna-
tional Conference on Robotics and Automation. 19–25.

[7] Y. Chen and G. Medioni. 1991. Object modeling by registration of multiple
range images. In Proceedings. 1991 IEEE International Conference on Robotics and
Automation. 2724–2729 vol.3.

[8] Johnny Chien, Chen-Chi Chuang, Chia-Yen Chen, and Reinhard Klette. 2016.
When to use what feature? SIFT, SURF, ORB, or A-KAZE features for monocular
visual odometry. 1–6.

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite. In Conference on Com-
puter Vision and Pattern Recognition (CVPR).

[10] Rafael C. Gonzalez and Richard E. Woods. 2008. Digital image processing. Prentice
Hall, Upper Saddle River, N.J.

[11] Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimiza-
tion. International Conference on Learning Representations (12 2014).

[12] Qing Li, Shaoyang Chen, Cheng Wang, Xin Li, Chenglu Wen, Ming Cheng, and
Jonathan Li. 2019. LO-Net: Deep Real-time Lidar Odometry. CoRR abs/1904.08242
(2019). arXiv:1904.08242 http://arxiv.org/abs/1904.08242

[13] Kok-Lim Low. 2004. Linear Least-Squares Optimization for Point-to-Plane ICP
Surface Registration. (01 2004).

[14] David G Lowe. 1999. Object recognition from local scale-invariant features. In
Proceedings of the seventh IEEE international conference on computer vision, Vol. 2.
Ieee, 1150–1157.

[15] Weixin Lu, Guowei Wan, Yao Zhou, Xiangyu Fu, Pengfei Yuan, and Shiyu Song.
2019. DeepICP: An End-to-End Deep Neural Network for 3D Point Cloud Regis-
tration. CoRR abs/1905.04153 (2019). arXiv:1905.04153 http://arxiv.org/abs/1905.
04153

[16] Weixin Lu, Yao Zhou, Guowei Wan, Shenhua Hou, and Shiyu Song. 2019. L3-net:
Towards learning based lidar localization for autonomous driving. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 6389–6398.

[17] Yecheng Lyu, Lin Bai, and Xinming Huang. 2018. Chipnet: Real-time lidar
processing for drivable region segmentation on an fpga. IEEE Transactions on
Circuits and Systems I: Regular Papers 66, 5 (2018), 1769–1779.

[18] Yecheng Lyu, Lin Bai, and Xinming Huang. 2018. Real-time road segmentation
using lidar data processing on an fpga. In 2018 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 1–5.

[19] Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss. 2019.
Rangenet++: Fast and accurate lidar semantic segmentation. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[20] François Pomerleau, Francis Colas, Roland Siegwart, and Stéphane Magnenat.
2013. Comparing ICP variants on real-world data sets. Autonomous Robots (04
2013). https://doi.org/10.1007/s10514-013-9327-2

[21] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation. Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE (2017).

[22] T. Qin, P. Li, and S. Shen. 2018. VINS-Mono: A Robust and Versatile Monocular
Visual-Inertial State Estimator. IEEE Transactions on Robotics 34, 4 (2018), 1004–
1020.

[23] E Recherche, Et Automatique, Sophia Antipolis, and Zhengyou Zhang. 1992.
Iterative Point Matching for Registration of Free-Form Curves. Int. J. Comput.
Vision 13 (07 1992).

[24] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
efficient alternative to SIFT or SURF. In 2011 International conference on computer
vision. Ieee, 2564–2571.

[25] M. Schwaab, M. Romanovas, D. Plaia, T. Schwarze, and Y. Manoli. 2016. Fusion
of visual odometry and inertial sensors using dual quaternions and stochastic
cloning. In 2016 19th International Conference on Information Fusion (FUSION).
573–580.

[26] Aleksandr Segal, Dirk Hähnel, and Sebastian Thrun. 2009. Generalized-ICP. Proc.
of Robotics: Science and Systems. https://doi.org/10.15607/RSS.2009.V.021

[27] Kuldeep Singh, Dinesh K. Vishwakarma, Gurjit Singh Walia, and Ra-
jiv Kapoor. 2016. Contrast enhancement via texture region based his-
togram equalization. Journal of Modern Optics 63, 15 (2016), 1444–1450.
arXiv:https://doi.org/10.1080/09500340.2016.1154194

[28] Norhayati Suaib, Mohammad Hamiruce Marhaban, M Iqbal Saripan, and Siti
Ahmad. 2014. Performance evaluation of feature detection and feature matching
for stereo visual odometry using SIFT and SURF. IEEE TENSYMP 2014 - 2014 IEEE
Region 10 Symposium, 200–203.

[29] Martin Velas, Michal Spanel, and Adam Herout. 2016. Collar Line Segments
for fast odometry estimation from Velodyne point clouds. 4486–4495. https:
//doi.org/10.1109/ICRA.2016.7487648

[30] Martin Velas, Michal Spanel, Michal Hradis, and Adam Herout. 2017. CNN for
IMU Assisted Odometry Estimation using Velodyne LiDAR. CoRR abs/1712.06352
(2017). arXiv:1712.06352 http://arxiv.org/abs/1712.06352

[31] S. Wang, R. Clark, H. Wen, and N. Trigoni. 2017. DeepVO: Towards end-to-end
visual odometry with deep Recurrent Convolutional Neural Networks. In 2017
IEEE International Conference on Robotics and Automation (ICRA). 2043–2050.

[32] Wei Wang, Muhamad Risqi Utama Saputra, Peijun Zhao, Pedro Gusmao, Bo Yang,
Changhao Chen, Andrew Markham, and Niki Trigoni. 2019. DeepPCO: End-to-
End Point Cloud Odometry through Deep Parallel Neural Network. 3248–3254.
https://doi.org/10.1109/IROS40897.2019.8967756

[33] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. 2018. Squeezeseg: Con-
volutional neural nets with recurrent crf for real-time road-object segmentation
from 3d lidar point cloud. In 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 1887–1893.

[34] Bichen Wu, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. 2019.
Squeezesegv2: Improved model structure and unsupervised domain adaptation
for road-object segmentation from a lidar point cloud. In 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 4376–4382.

[35] Nan Yang, Rui Wang, Jörg Stückler, and Daniel Cremers. 2018. Deep Virtual
Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse
Odometry. CoRR abs/1807.02570 (2018). arXiv:1807.02570 http://arxiv.org/abs/
1807.02570

[36] Deyu Yin, Qian Zhang, Jingbin Liu, Xinlian Liang, YunshengWang, Jyri Maanpää,
Hao Ma, Juha Hyyppä, and Ruizhi Chen. 2020. CAE-LO: LiDAR Odometry
Leveraging Fully Unsupervised Convolutional Auto-Encoder for Interest Point
Detection and Feature Description.

[37] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera, Kejie Li, Harsh Agar-
wal, and IanD. Reid. 2018. Unsupervised Learning ofMonocular Depth Estimation
and Visual Odometry with Deep Feature Reconstruction. CoRR abs/1803.03893
(2018). arXiv:1803.03893 http://arxiv.org/abs/1803.03893

[38] Ji Zhang and Sanjiv Singh. 2017. Low-drift and Real-time Lidar Odometry and
Mapping. Autonomous Robots 41 (02 2017), 401–416. https://doi.org/10.1007/
s10514-016-9548-2

http://arxiv.org/abs/1809.05786
http://arxiv.org/abs/1809.05786
http://arxiv.org/abs/1904.08242
http://arxiv.org/abs/1904.08242
http://arxiv.org/abs/1905.04153
http://arxiv.org/abs/1905.04153
http://arxiv.org/abs/1905.04153
https://doi.org/10.1007/s10514-013-9327-2
https://doi.org/10.15607/RSS.2009.V.021
http://arxiv.org/abs/https://doi.org/10.1080/09500340.2016.1154194
https://doi.org/10.1109/ICRA.2016.7487648
https://doi.org/10.1109/ICRA.2016.7487648
http://arxiv.org/abs/1712.06352
http://arxiv.org/abs/1712.06352
https://doi.org/10.1109/IROS40897.2019.8967756
http://arxiv.org/abs/1807.02570
http://arxiv.org/abs/1807.02570
http://arxiv.org/abs/1807.02570
http://arxiv.org/abs/1803.03893
http://arxiv.org/abs/1803.03893
https://doi.org/10.1007/s10514-016-9548-2
https://doi.org/10.1007/s10514-016-9548-2

	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Problem Setup
	3.2 Formulation
	3.3 Data prepossessing
	3.4 LiDAR odometry regression

	4 Experiments
	4.1 Implementation detail
	4.2 Dataset
	4.3 Evaluation
	4.4 Ablation study

	5 Conclusions
	References

