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Abstract—We propose a novel and efficient training method
for RNNs by iteratively seeking a local minima on the loss
surface within a small region, and leverage this directional
vector for the update, in an outer-loop. We propose to utilize
the Frank-Wolfe (FW) algorithm in this context. Although, FW
implicitly involves normalized gradients, which can lead to a
slow convergence rate, we develop a novel RNN training method
that, surprisingly, even with the additional cost, the overall
training cost is empirically observed to be lower than back-
propagation. Our method leads to a new Frank-Wolfe method,
that is in essence an SGD algorithm with a restart scheme.
We prove that under certain conditions our algorithm has a
sublinear convergence rate of O(1/ε) for ε error. We then conduct
empirical experiments on several benchmark datasets including
those that exhibit long-term dependencies, and show significant
performance improvement. We also experiment with deep RNN
architectures and show efficient training performance. Finally,
we demonstrate that our training method is robust to noisy data.

I. INTRODUCTION

Consider the problem of training RNNs based on minimizing
empirical risk over minibatches, B that are sampled uniformly
at random from training examples X ×Y of feature-label pairs
(x, y) over M time steps. Let us denote the instance at m-
step as xm, and the hidden state as zm. The batch-averaged
empirical risk can be written as:

min
ω

F (ω)
def
= EB∼X×Yf(B;ω)

def
=

∑
(x,y)∼B

`(y, zM ;ω`)


s.t. zm = h(xm, zm−1;ωh), ∀ m ∈ [M ], (1)

where ω = {ω`, ωh} denotes the RNN weights, `, h denotes the
loss and (nonconvex) state transmission functions parameterized
by ω`, ωh, and E denotes the expectation operator.
Vanishing and Exploding Gradients. Training stability of
RNNs is regarded as a fundamental aspect, attracting much
attention in the literature [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In this
context, gradient explosion/decay is identified as one of the key
reasons that prevent RNNs from being trained efficiently and
effectively, where the gradient magnitude is either too small or
too large, leading to severe training instability [11]. This issue
has been attributed to:
P1. The number of time steps, M , is large where long-term

dependencies exist among the data;
P2. The state transmission function, h, involves multiple

hidden states such as in deep RNNs;

P3. The data samples, X , are very noisy or the true signal is
weak.

Proposed Method. Different from prior works that propose
methods based on novel designs [12] or architectures [13] as a
means to mitigate gradient decay or explosion, we propose to
directly modify the well-known back-propagation algorithm.
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Fig. 1: Proposed method.

At a high-level, we propose to
estimate the stable (approximate)
gradients in RNNs. In Fig. 1, u
denotes the current realization for
function F (ω) whose gradient is
∇F (u). ∆u denotes the desired
output vector that points towards
the local minimum from u, and
δ ≥ 0 denotes the radius of the search region in the parameter
space centered at u (denoted by the dotted circle). Obviously,
∇F (u) and ∆u could be quite different, and our goal is to learn
∆u, by looking around in a sufficiently small neighborhood.

Trust-Region vs. Projected Gradient vs. Frank-Wolfe. All
of the three methods are potentially applicable for our learning
purpose. Trust-region optimization [14, 15, 16] usually utilizes
quadratic approximation to locate a local minimum given the
current solution. In deep learning, however, computing the
Hessian matrix in the high dimensional space is very challeng-
ing. If simplified with the identity matrix, the corresponding
closed-form solution is equivalent to the `2-normalized gradient.
Projected gradient [17] for training RNNs may lead to slow
convergence due to the vanishing/exploding gradients, because
the inner loop for locating the local minimum relies on the
RNN gradients as well. In contrast, we propose to utilize the
Frank-Wolfe (FW) algorithm [18], one of the simplest and
earliest iterative algorithms for constrained optimization due to
its projection-free property and large-scale applicability. FW
maintains a feasible solution satisfying the constraints, without
the need to explicitly incorporate the constraints. Nevertheless,
we are generally agnostic to the approach used, and our focus
is on RNN training methods that are based on locally optimized
trajectory. We collect a few salient aspects of our method and
FW in particular to further build intuition.

Normalized Gradient vs. Frank-Wolfe. Since the magnitude
of vanishing or exploding gradients limits RNN trainability,
one plausible approach is to normalize gradients. While
normalization has been been explored in practice for training



deep models [19], results in [20] demonstrate that the iteration
complexity of `2-normalized stochastic gradient descent (SGD)
is O(1/ε4) in order to achieve ε-stationary solutions. In contrast,
although normalization is inherent in the Frank-Wolfe algorithm
as well w.r.t. `p(p ≥ 1)-norm constraints, such normalization
guarantees the solution per iteration to be inside the local
region towards a local minimum. Additionally, we show that
our proposed Frank-Wolfe algorithm converges faster.

Stable Direction. Gradient is singularly local in information,
and as such, it does not fully capture the landscape, say, within
a small ball around the point. Obviously, if the gradients
were small within the entire ball, this would correspond to
essentially being on a flat surface. In other cases, we are often
in a situation, where the gradient vectors change rapidly, and
one can make progress “if it was possible to look around
in suitable neighborhood.” A measure for changing landscape
within a closed convex set, C, for convex smooth functions is the
curvature constant M [21]. For a smooth convex function, g(·),
its curvature is defined as the maximum Bregman Divergence,
namely,

M = max
x, y, s ∈ C

y = (1− γ)x+ γs

2

γ2
(g(y)− g(x)− 〈∇g(x), y − x〉).

(2)

Note that the curvature M captures the notion of maximum
error over all linear approximation errors within the set C, and
as such it can be significantly different from the gradient at
any specific location. The notion of curvature is intimately tied
to the Frank-Wolfe algorithm. A remarkable fact is that the
Frank-Wolfe algorithm, is affine invariant, and with step size
γk = 2/(k + 1),∀k ≥ 1, asserts that, at iteration k, we can
guarantee g(xk)− g(x∗) ≤ M

k+2 , where g(x∗) is the minimum
in the set C. Now, in our context of RNNs, the function F (ω)
is not globally convex, and this convergence rate is no longer
true globally. Nevertheless, if one were in a position that
satisfies local convexity within a sufficiently small ball of
radius δ, it is then possible to assert this fact. While, even this
cannot be guaranteed, the situation only demands that along
the path trajectory of the updates, we are in a locally convex
region. Additionally, one can often realize local convexity by
adding a suitably small quadratic regularizer, which is adapted
to the current location in the parameter space. In Sec. IV,
under suitable technical conditions, which fall short of global
convexity, we show that our proposed algorithm converges at
a sublinear rate of O(1/ε) to achieve ε approximation error.

The key insight from Eq. 2 for training RNNs is that for
convergence guarantees, local curvature constant, rather than
the noisy gradient at the current location is of relevance. This
provides us a means to mitigate vanishing gradients, through
leveraging Frank-Wolfe algorithm.

Contributions. Our key contributions in this paper are:

• We propose a novel yet simple RNN optimizer based on the
Frank-Wolfe method;

• We theoretically analyze the convergence of our algorithm
and its benefits in RNN training;

• We empirically conduct comprehensive experiments to
demonstrate the effectiveness and efficiency of our algorithm
in various settings that cover all the scenarios of P1, P2, P3.

II. RELATED WORK

Below we only summarize the related works in the literature
of RNNs.
Optimization in RNNs. Truncated backpropagation through
time (TBPTT) [22] is a widely used technique to avoid
vanishing/exploding gradients in RNNs by controlling the
maximum number of time steps in gradient calculation, al-
though it has been demonstrated to be not robust to long-
term dependencies [23]. Gradient clipping [11, 24] is another
common technique to prevent the exploding (not vanishing)
gradients1 by, for instance, rescaling gradients when their
norms are over a predefined threshold. It has been proved
in [20] that gradient clipping can accelerate the training of
deep neural networks. The scheme of initializing recurrent
weight matrices to be identity or orthogonal has been widely
studied such as [25, 26, 27, 28, 29, 30, 31]. Weight matrix
reparametrization has been explored as well [32]. Some other
optimization approaches for training RNNs are proposed as well
such as real-time recurrent learning (RTRL) [33]. To the best
of our knowledge, trust-region (although it has been explored
in other applications of deep learning such as reinforcement
learning [34]) or projected gradient methods have not been
studied widely as an RNN optimizer, which we consider as
one of our future works.
Novel Network Architecture Development for RNNs. Re-
cently there are significant amount of works on developing
variants of RNNs such as, just to name a few, long short-term
memory (LSTM) [13], gated recurrent unit (GRU) [35, 36],
Fourier recurrent unit [37], UGRNN [38], FastGRNN [39],
unitary RNNs [26, 27, 40, 41, 42], deep RNNs [43, 44, 45],
linear RNNs [46, 47, 48], residual/skip RNNs [39, 49, 50,
51, 52], ordinary differential equation (ODE) based RNNs
[12, 39, 53, 54, 55, 56, 57]. For instance, FastGRNN [39] feed-
forwards state vectors to induce skip or residual connections, to
serve as a middle ground between feed-forward and recurrent
models, and to mitigate gradient decay. Incremental RNNs
(iRNNs) [57] are developed based on ODE with theoretical
guarantee of identity gradients in the intermediate steps in chain
rule for gradient calculation. Independently RNN (IndRNN)
[24] is a network structure where neurons in the same layer
are independent of each other and multiple IndRNNs can be
stacked to construct a deep network.

III. FRANK-WOLFE RNN OPTIMIZER

Recall that in our proposed method, given the current point
ω in the parameter space, we attempt to solve a local minima
in small ball around ω. To this end, we consider the following

1Therefore, in practice vanishing gradients are more often for performance
degradation of RNNs.



Algorithm 1: Frank-Wolfe RNN Optimizer
Input : objective f , norm p, local radius δt,∀t, max numbers

of iterations K,T
Output : RNN weights ω

Randomly initialize ω0;
for t = 1, · · · , T do

∆ωt,0 ← 0;
for k = 1, · · · ,K do

st,k ← arg mins∈C(p,δt)〈s,∇∆ωF (ωt−1 + ∆ωt,k−1)〉;
∆ωt,k ← (1− 1

k )∆ωt,k−1 + 1
kst,k;

end
ωt ← ωt−1 + η∆ωt,K ;

end
return ωT ;

general constrained optimization problem, which is also a
central aspect of the Frank-Wolfe method:

min
‖∆ω‖p≤δ

F (ω + ∆ω), (3)

where p > 1 is any `p norm. For our proposed method (see
Alg. 1), this constrained optimization is carried out in an inner
loop, by means of the FW method. Once, a satisfactory point
is reached (which usually is quite fast), we then update the
parameters in an outer loop.
Frank-Wolfe Algorithm. We apply the stochastic Frank-Wolfe
algorithm to solve Eq. 3, and list our novel and simple Frank-
Wolfe based RNN optimizer in Alg. 1. In contrast to GD,
the iterations in the Frank-Wolfe algorithm are as follows, in
general:

s(k−1) = arg min
s∈C

〈
s,∇f(x(k−1))

〉
,

x(k) = (1− γk)x(k−1) + γks
(k−1),

(4)

where 〈·, ·〉 denotes the inner product of two vectors, and
γk ∈ [0, 1]. For `p(p ≥ 1)-norm constraints, i.e., C(p, δ) =
{s | ‖s‖p ≤ δ}, there exist close-form solutions for arg min
in Eq. 4, as

s(k−1) = −α · sgn(∇f(x(k−1))) · |∇f(x(k−1))|
p
q ,

s.t. 1/p+ 1/q = 1,
(5)

where sgn and |·| denote entry-wise sign and absolute operators,
respectively, and α ≥ 0 is a scalar satisfying ‖s(k−1)‖q = δ.
In particular,

• p = 2 ⇒ s(k−1) = −δ · ∇f(x(k�1))
‖∇f(x(k�1))‖2

, i.e., δ-scaled `2
normalized gradient;

• p → ∞ ⇒ s(k−1) = −δ · sgn(∇f(x(k−1))), i.e., δ-scaled
sign gradient.
In Alg. 1 we set γk = 1

k to ensure that ∆ω always lies inside
the local region with convergence guarantee [58]. Similarly we
decrease δt with the learning rate. Note that Adam [59] can be
used to update ω. Besides, Alg. 1 can be applied to train other
deep models as well. Similar two-loop algorithmic structures

have been explored in the literature such as [60] for training
convolutional neural networks (CNNs).

In this paper we focus on the analysis and experiments with
p = 2, although our analysis generally holds for p ≥ 1. In
practice, we utilize p→∞ to train IndRNN [24] and achieve
98.37% on Pixel-MNIST with K = 30 over 400 epochs, similar
to the numbers in Table II.

IV. ANALYSIS

Zhu et al. in [61] proved that for training RNNs, when the
number of neurons is sufficiently large, meaning polynomial in
the training data size and in network depth, then SGD is capable
of minimizing the regression loss in the linear convergence
rate. In contrast, we discuss the convergence of Alg. 1 for an
arbitrary RNN. We start our analysis from a special case with
`2-normalized gradients as follows:

Theorem 1 (`2-Normalized Gradients). Suppose that the
following assumptions hold globally:

• F is lower-bounded, twice differentiable, and
(L0, L1)-smoothness, i.e., ‖∇2F (ω)‖2 ≤ L0 +
L1‖∇F (ω)‖2,∀ω,∃L1, L2 > 0;

• There exist a τ > 0 such that ‖∇f(B, ω) − ∇F (ω)‖2 ≤
τ,∀B,∀ω holds.

Then for K = 1 in Alg. 1, there exists δ > 0 so that in order to
achieve ε-stationary points the iteration complexity for Alg. 1
is upper bounded by O(1/ε4), at least.

To prove this theorem, please refer to Thm. 7 in [20]. Below
we extend our analysis to general cases.

Definition 1 (Star-convexity [62]). Let ω∗ be a global mini-
mizer of a smooth function F . Then, F is said to be star-convex
at a point ω provided that F (ω)−F (ω∗)+〈ω∗−ω,∇F (ω)〉 ≤
0,∀ω.

Theorem 2 (Convergence). Let {ωt}t∈[T ] be the sequence of
the weight updates from Alg. 1. Suppose

A1. F in Eq. 1 is locally convex within each radius δt,∀t ∈ [T ]
w.r.t. `2 norm centered at ωt−1;

A2. F in Eq. 1 is also star-convex, given a global minimizer
ω∗, i.e., F is lower bounded by F (ω∗);

A3. F in Eq. 1 is differentiable and its gradient is Lipschitz
continuous with constant L > 0, i.e., ‖∇F (ω1) −
∇F (ω2)‖2 ≤ L‖ω1 − ω2‖2,∀ω1, ω2;

A4. ωt,∀t is upper bounded w.r.t. ω∗, i.e., ‖ωt−ω∗‖2 ≤ α <
+∞,∀ω,∃α;

A5. It holds that β ≤ ‖∇F (ωt−1) − ∆ωt,K‖2 ≤ (1 −
Lη)

1
2 ‖∆ωt,K‖2,∀t,∃β > 0,∃η ≤ 1

L .
Then we have that the output of Alg. 1, ωT , satisfies

F (ωT )− F (ω∗) ≤ ‖ω0 − ω∗‖22 + 2ηρ

2ηT
, (6)

where ρ =
(
α
β −

η
2

)
(1 − Lη)

∑
t ‖∆ωt,K‖22 ∈ R, i.e., a

real number, and ω0 denotes the initialization of the network
weights. In particular, ωT will converge to ω∗ asymptotically if



limT→+∞
∑T
t=1 δ

2
t < +∞ holds. Further, if 0 ≤ ‖ω0−ω∗‖22+

2ηρ < +∞ holds, then ωT will converge to ω∗ sublinearly.

Proof. Based on Assmp. A1, A3 and A5, we have

F (ωt) ≤ F (ωt−1) + 〈∇F (ωt−1), ωt − ωt−1〉+
L

2
‖ωt − ωt−1‖22

= F (ωt−1)− η〈∇F (ωt−1),∆ωt,K〉+
Lη2

2
‖∆ωt,K‖22

= F (ωt−1) +
η

2
‖∇F (ωt−1)−∆ωt,K‖22

− η

2
‖∇F (ωt−1)‖22 +

Lη2 − η
2

‖∆ωt,K‖22 ≤ F (ωt−1). (7)

Further, based on Assmp. A2, A4 and A5, we have

F (ωt)− F (ω∗) ≤ 〈∇F (ωt−1), ωt−1 − ω∗〉 −
η

2
‖∇F (ωt−1)‖22

+
η

2
‖∇F (ωt−1)−∆ωt,K‖22 +

Lη2 − η
2

‖∆ωt,K‖22

=
1

2η

(
‖ωt−1 − ω∗‖22 − ‖ωt − ω∗‖22

)
+ 〈∇F (ωt−1)−∆ωt,K , ωt − ω∗〉+

Lη2 − η
2

‖∆ωt,K‖22

≤ 1

2η

(
‖ωt−1 − ω∗‖22 − ‖ωt − ω∗‖22

)
+

(
α

β
− η

2

)
(1− Lη)‖∆ωt,K‖22. (8)

Now based on Eq. 7 and Eq. 8, we can complete our proof by

F (ωT )− F (ω∗) ≤ 1

T

∑
t

F (ωt)− F (ω∗)

≤ ‖ω0 − ω∗‖22
2ηT

+
1

T

(
α

β
− η

2

)
(1− Lη)

∑
t

‖∆ωt,K‖22.

Equivalently, Thm. 2 states that our algorithm needs O( 1
ε )

updates of ω, independent on the inner loops K in Alg. 1, in
order to achieve an ε-stationary solution. Note that the constant
ρ is highly correlated with the number of inner loops, K, in
the algorithm. Therefore, empirically it is challenging to tell
which choice of K will be the best. From our experiments,
we found that often small K’s can work better than SGD for
training RNNs.
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Fig. 2: Geometric interpretation.

Geometric Interpretation
of Assmp. A5. In Fig. 2,
we illustrate the geometric
relationship between
∇F (ωt−1),∆ωt,K and
∇F (ωt−1) − ∆ωt,K given
the current solution ωt−1

and β → 0. Clearly, any point within the green dotted circle
(with radius (1 − Lη)

1
2 ‖∆ωt,K‖2) will be a candidate for

∇F (ωt−1) so that A5 holds. Therefore, the angle between
any pair of ∇F (ωt−1) and ∆ωt,K should be no more than
±45o. In other words, ∇F (ωt−1) and ∆ωt,K should have
very similar directions. We verified this on the HAR-2 dataset
(see Sec. V) by computing such angles to see the distribution

using 200 epochs. Statistically these angles are within ±45o

with mean −4.19o and std 0.51o.
Inexact Update in Frank-Wolfe. In the stochastic setting with
limited K and large-scale data, however, ∇F (ωt−1),∆ωt,K
are infeasible to compute exactly. To address this problem, we
borrow the concept of approximation quality in the inexact
Frank-Wolfe method in [63].

Definition 2 ([63]). In the Frank-Wolfe update, st,k(‖st,k‖2 ≤
δt) is used so that it holds that

〈st,k,∇F (ωt−1 + ∆ωt,k−1)〉 ≤

min
‖s‖2≤δt

〈s,∇F (ωt−1 + ∆ωt,k−1)〉+
λMF

k + 1
, ∀k ≥ 1,

(9)

where λ ≥ 0 denotes an arbitrary accuracy parameter that
controls the upper bound of the convergence rate linearly from
factor 1 to (1 + λ), and MF denotes the curvature constant
of F .

Note that Eq. 9 will still hold by setting λ =

maxk

{
2δt(k+1)
MF

‖∇F (ωt−1 + ∆ωt,k−1)‖2
}
< +∞. Clearly,

as long as ‖∇F (ωt−1 + ∆ωt,k−1)‖2 = O(1/k) is met, the
convergence of Alg. 1 can be always guaranteed.
Stochastic Frank-Wolfe in Alg. 1. In our implementation,
we utilize the stochastic Frank-Wolfe method [58] instead for
computational efficiency. Essentially stochastic FW can be
considered as a realization of inexact update in FW, and thus
all the analysis above holds for this case as well.

TABLE I: Dataset Statistics

Dataset #Train #Test #TimeStep #Feature

HAR-2 7,352 2,947 128 9
Noisy-HAR-2 7,352 2,947 128 9
Pixel-MNIST 60,000 10,000 784 1
Permute-MNIST 60,000 10,000 784 1

V. EXPERIMENTS

Datasets. We test our RNN optimizer on the following
benchmark datasets with all the statistics listed in Table I:
• Adding task: We strictly follow the adding task2 defined by

[13, 26] to generate the dataset. There are two sequences with
length T = 100. The first sequence is sampled uniformly
at random U [0, 1]. The second sequence is filled with 0
except for two entries of 1. The two entries of 1 are located
uniformly at random position i1, i2 in the first half and
second half of the sequence. The prediction value is the sum
of the first sequence between [i1, i2].

• Pixel-MNIST & Permute-MNIST: Pixel-MNIST refers to
pixel-by-pixel sequences of images in MNIST where each
28 × 28 image is flattened into a 784 time sequence vector,
while a random permutation to the Pixel-MNIST is applied to
generate a harder time sequence dataset as Permute-MNIST.
All datasets are normalized as zero mean and unit variance
during training and prediction.

2https://github.com/rand0musername/urnn



• HAR-2 [39]: HAR-2 was collected from an accelerometer
and gyroscope on a Samsung Galaxy S3 smartphone, and all
samples are normalized with zero mean and unit variance.

• Noisy-HAR-2: This dataset is generated by adding Gaussian
noise to HAR-2 with a mean of zero and a variance of two
to HAR-2 to evaluate the robustness of our algorithm.

Baseline Algorithms and Implementation. We compare our
Frank-Wolfe based RNN optimizer with SGD (gradient clipping
involved if necessary) and TBPTT comprehensively, using (1)
a vanilla RNN with one-layer transition function consisting of
a linear function followed by a tanh activation (same as the
literature. See [64]) and (2) IndRNN with six layers3. Mean-
square-error (MSE) and cross-entropy losses are applied for
binary and multi-class classification tasks, respectively. Adam
[59] is used as the optimizer for all the methods. We implement
our experiments using PyTorch, and run all the experiments on
an Nvidia GeForce RTX 2080 Ti GPU with CUDA 10.2 and
cuDNN 7.6.5 on a machine with Intel Xeon 2.20 GHz CPU
with 48 cores. The code of our optimizer can be found here 4.
Hyperparameters. The hyperparameters of the vanilla RNN
and IndRNN are the same as the literature [24, 64, 65], if
applicable, as from our experiments they seem to be the best
settings. For our optimizer we perform a grid search over
several learning rates {2e-5, 2e-4, 6e-4, 1e-3}, batch size {32,
64, 128, 256, 512} and learning rate decay factor {0.1, 0.5, 0.9}
on validation data (from a small portion of training data) to
ensure that a good parameter is used in our algorithm. We use
hidden dimension 128 for MNIST datasets and the Adding task.
When training HAR-2 related tasks, we use hidden dimension
80. We report the best test accuracy.

A. Results
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Fig. 3: Training loss of Adding Task

Adding Task. The
Adding task is designed
to evaluate the capability
of RNNs to capture long-
term dependency among
the data [13, 24, 25,
26, 26, 40]. Fig. 3 illus-
trates the loss change of
our algorithm compared
with SGD on this task
when the time sequence
is long. It is clear that our algorithm converges after a
reasonable number of iterations while SGD lost the learning
ability in this task. We hypothesize that at the beginning all
the algorithms search for a good direction within a certain
region. Given sufficient updates later, our algorithm starts to
move towards informative directions, leading to significantly
fast convergence.
Vanilla RNN on Pixel-MNIST & Permute-MNIST. We
further apply our algorithm to Pixel-MNIST and Permute-
MNIST and compare it with Adam and TBPTT. The forward

3https://github.com/Sunnydreamrain/IndRNN_pytorch
4https://github.com/YunYunY/FW_RNN_optimizer
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Fig. 4: Training loss and test accuracy on Pixel-MNIST and Permute-MNIST

and backward steps of TBPTT are set to 196, which means
each 784 time sequence is partitioned into 4 segments. For our
algorithm, we perform the inner iteration K=1 and 5. Since
our algorithm can be easily combined with TBPTT, we also
include the combination experiments on the two datasets.

Fig. 4 shows the change of training cross-entropy and test
accuracy of RNN with the epoch for Pixel-MNIST and Permute-
MNIST. Without extra optimization techniques, SGD shows
no convergence or very slow convergence. We observe that
TBPTT does help the convergence for the Permute-MNIST,
however, the performance of TBPTT is only slightly better than
the baseline SGD in the Pixel-MNIST case with sporadically
increases and decreases of loss. As a contrast, our algorithm
shows a faster convergence rate and a much more stable
performance on both datasets. When TBPTT is combined
with our algorithm, the model achieves faster convergence and
higher test accuracy than the baseline for Pixel-MNIST. As for
Permute-MNIST, the combination method eventually reaches
higher test accuracy with more training epochs. It is worth
mentioning that when the inner iteration K increases in our
algorithm, the total number of gradient updates needed for
convergence decreases.
IndRNN on Pixel-MNIST & Permute-MNIST. This exper-
iment addresses the application of our algorithm on training
deep models. Since IndRNN can be stacked to construct a deep
network [24], we apply a six-layer IndRNN structure with the
two benchmark datasets Pixel-MNIST and Permute-MNIST.
The model has proved the state-of-the-art performance on the
two datasets with Adam optimizer [24], thus we also use Adam
as the baseline algorithm to compare with ours. The model
structure we use follows exactly [24].The inner iteration K is
tested with values {1, 5, 10, 30}.

The training loss and test accuracy results of the two datasets
trained with IndRNN are shown in Fig. 5. IndRNN applied
batch normalization (BN) to accelerate Pixel-MNIST training.



Due to the truncated training process of TBPTT, the relevant
statistics over the mini-batch changes over time. It is not
suitable to apply BN to TBPTT. Thus in Fig. 5 we only compare
our algorithm with the baseline IndRNN. Our algorithm has the
same performance as Adam optimizer. In terms of accuracy,
our algorithm achieves comparable test accuracy after 400
epochs using about half training time when K=5.
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Fig. 5: Training loss on Pixel-MNIST and Permute-MNIST with indRNN

TABLE II: Test accuracy (%) (training hours) of IndRNN

Dataset Acc. (Time)
Baseline Ours K=1 Ours K=5

Pixel-MNIST 98.88 (4.84) 98.73 (3.46) 98.82 (2.55)

Permute-MNIST 93.00 (4.92) 92.87 (3.68) 92.59 (2.41)

RNNs on HAR-2 & Noisy HAR-2. This experiment focuses
on noise-free and noisy sequences. When the data samples
are very noisy, RNNs usually exhibit unstable performance.
To verify the robustness of our algorithm on noisy input, we
compare the performance of the proposed optimizer with Adam
and TBPTT on plain RNN with HAR-2 and Noisy-HAR-2 as
input. The task is binary classification after observing a long
sequence. HAR-2 has a 128 time sequence. Adding Gaussian
noise with a mean of zero and a variance of two makes the
task harder. We set forward and backward steps in TBPTT
as 16. Thus the sequence is split into 16 segments. Same as
Experiment 1, we also include the combination of TBPTT
and our algorithm in the experiment. We also demonstrate the
compatibility of our algorithm with LSTM and BN using the
two datasets. We estimate the MSE of each experiment.

Fig. 6 and Table III show that our algorithm is not only
robust to long-term dependency tasks but also robust to noisy
time sequences. No matter the input data is noise-free or noisy,
the training losses of SGD oscillate up and down. The TBPTT
reaches a desirable MSE in the noise-free case because the
forward and backward steps are set up relatively short. TBPTT
is capable of avoiding the vanishing gradient issue in this
setting. The literature shows RNN with SGD usually reaches a
test accuracy 91.31% with the learning that takes at least 300
epochs on HAR-2 dataset [39]. With the same initial learning
rate setting, our algorithm outperforms the baseline within
less training epochs. It is shown in Table III that gradient
clipping does improve the model performance on noise-free
data, however, it loses its advantage when applied to Noisy-
HAR-2 dataset. When combining our algorithm with TBPTT,
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Fig. 6: Training loss of RNN on HAR-2 and Noisy-HAR-2

TABLE III: Test accuracy (%) and training time (hr) of RNN

Method HAR-2 Time Noisy-HAR-2 Time

SGD 87.66 0.17 74.38 0.17
SGD+Clipping 93.36 0.13 74.38 0.13
TBPTT 93.62 0.38 86.20 0.56
LSTM+Adam 94.40 0.14 92.12 0.17
Ours K=1 93.52 0.15 86.04 0.14
Ours K=5 94.11 0.14 89.36 0.14
Ours K=10 93.65 0.37 89.52 0.35
Ours+BN 94.37 0.36 89.38 0.41
TBPTT+Ours 94.01 0.35 89.28 0.84
LSTM+Ours 94.95 0.19 92.41 0.42
IndRNN 95.73 0.46 91.20 0.45
IndRNN+Ours 96.55 0.13 92.15 0.17

we reach the test accuracy 94.01%. The baseline accuracy of
SGD is 15.14% less than our algorithm on the Noisy-HAR-
2 task. We also verified that our optimizer works well with
LSTM and BN as listed in Table III. When our algorithm is
combined with IndRNN, it overpasses the original IndRNN
with less running time.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we propose a novel and simple RNN optimizer
based on the Frank-Wolfe method. We provide a theoretical
proof of the convergence of our algorithm. The empirical
experiments on several benchmark datasets demonstrate that
the proposed RNN optimizer is an effective solver for the
training stability of RNNs. Our algorithm outperforms SGD in
all experiments and boosts the TBPTT performances. It also
reaches a comparable test accuracy with the baseline algorithm
in deep RNNs while requiring fewer gradient updates and less
training time. The algorithm shows robustness in the noisy data
classification experiment with an improvement of 15.14%. This
work motivates the RNN training on a distributed system. In
future work, we will investigate the application of our algorithm
in a distributed setting which can reach significant speed-ups
at no or nearly no loss of accuracy.
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